Syrian Hamsters Express Polymorphism at an MHC Equivalent

  • W. R. Duncan
  • J. W. Streilein
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 134)


The classical inbred strains of Syrian hamsters, MHA, LSH, CB, and PD4, display strong cellular alloimmune reactions as indicated by acute skin graft rejection (1,2), strong mixed lymphocyte reactivity (1), and potent graft-vs-host reactivity (1,3); they are unable, however, to develop detectable alloantibody responses to strong histocompatibility determinants (4–6). This quality of the immune response to transplantation alloantigens appears to be unique in hamsters, since in all other species, strong transplantation alloantigens elicit potent alloantibody responses (7–12). Several hypotheses have been advanced to explain this paradox: 1. domesticated Syrian hamsters display a rather limited genetic polymorphism, i.e., because of their derivation from a restricted gene pool, they may differ only at several minor histocompatibility loci but not at a major histocompatibility complex (MHC) equivalent; 2. hamster B cells fail to recognize or respond to MHC-like determinants; 3. Syrian hamsters as a species display little or no polymorphism at their MHC equivalent, Hm-1.


Syrian Hamster Stimulation Index Mixed Lymphocyte Reaction Genetic Linkage Study Cytotoxic Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billingham, R.E.; Hildemann, W.H. Proc R Soc Lond [Biol] 148 (1958) 216.CrossRefGoogle Scholar
  2. 2.
    Duncan, W.R.; Streilein, J.W. Transplantation 25 (1978a) 12.PubMedCrossRefGoogle Scholar
  3. 3.
    Streilein, J.W.; Billingham, R.E. J Exp Med 132 (1970) 168.Google Scholar
  4. 4.
    Duncan, W.R.; Streilein, J.W. J Immunol 118 (1977) 832.PubMedGoogle Scholar
  5. 5.
    Palm, J. et al. J Hered 58 (1967) 40.PubMedGoogle Scholar
  6. 6.
    Billingham, R.E. et al. Reconstr Surg Traumatol 34 (1967) 329.CrossRefGoogle Scholar
  7. 7.
    Duncan, W.R.; Streilein, J.W. Transplantation 25 (1978b) 17.PubMedCrossRefGoogle Scholar
  8. 8.
    Klein, J. Adv Immunol 26 (1978) 55.PubMedCrossRefGoogle Scholar
  9. 9.
    McKenzie, I.F.C. et al. Immunogenetics 3 (1976) 241.CrossRefGoogle Scholar
  10. 10.
    Nabholz, M.H. et al. Immunogenetics 1 (1975) 457.CrossRefGoogle Scholar
  11. 11.
    Shreffler, D.C.; David, C.S. Adv Immunol 29 (1975) 125.CrossRefGoogle Scholar
  12. 12.
    Klein, J. Science 203 (1979) 516.PubMedCrossRefGoogle Scholar
  13. 13.
    Streilein, J.W.; Duncan, W.R. Immunogenetics 9 (1979) 563.CrossRefGoogle Scholar
  14. 14.
    Murphy, M.R. Am Zool 11 (1971) 632.Google Scholar
  15. 15.
    Klein, J. et al. Immunogenetics 2 (1975) 141.CrossRefGoogle Scholar
  16. 16.
    Yerganian, G. Prog Exp Tumor Res 16 (1972) 2.PubMedGoogle Scholar
  17. 17.
    Duncan, W.R. et al. Immunogenetics 9 (1979) 263.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • W. R. Duncan
    • 1
  • J. W. Streilein
    • 1
  1. 1.Departments of Cell Biology and Internal MedicineUniversity of Texas Health Science Center at DallasDallasUSA

Personalised recommendations