Advertisement

Prevention of Primary Simian Adenovirus Type 7 (SA7) Tumors in Hamsters by Adoptive Transfer of Lymphoid Cells: Role of Different Cell Types

  • Surjit K. Datta
  • John J. Trentin
  • Kenneth J. McCormick
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 134)

Abstract

Malignant neoplasms in general acquire neo-antigens, usually called tumor-specific transplantation antigen (TSTA). Chemically induced tumors usually exhibit antigens unique to each tumor, whereas tumors induced by a virus share a common antigen specific for that virus regardless of the histological type of tumor or host species in which the tumor was induced (1–3). These TSTA invoke an immune response, mainly of cell-mediated type. The immune control or progressive growth of the tumor depends upon many factors including strength of the cellular immune response (degree of sensitization of lymphoid cells), “sneaking through” or appearance of serum blocking factor (1, 3–5), and suppressor cells (6–8). It has generally been accepted that thymus-dependent lymphocytes (T) are primarily responsible for rejection of tumors (9–15). There is considerable evidence that macrophages also contribute an important effector mechanism against tumors (16). Recently, natural killer (NK) cells are also thought to be involved in tumor surveillance (17–19). Most of the studies of effector mechanisms of tumor immunity have been carried out in vitro, using various cytotoxicity assays. To assess the role of in vivo cell-mediated immune responses in tumor immunity, two main approaches usually have been used. One consisted of studying the influence of immuno-suppression (x-irradiation, thymectomy, anti-lymphocyte serum) on the development of tumors (20–24). The alternate approach is to augment cellular immune responses either through non-specific stimulation such as Bacillus Calmette-Guerin (BCG), Corynebacterium parvum (CP), poly I:C, etc. (25–28), or through adoptive transfer of specifically sensitized lymphoid cells (29–31).

Keywords

Spleen Cell Adoptive Transfer Peritoneal Exudate Cell Adult Hamster Phosphate Buffer Saline Solution Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klein, G. Annu Rev Microbiol 20 (1966) 223.PubMedCrossRefGoogle Scholar
  2. 2.
    Law, L.W. Cancer Res 26 (1966) 551.PubMedGoogle Scholar
  3. 3.
    Law, L.W. Cancer Res 29 (1969) 1.PubMedGoogle Scholar
  4. 4.
    Hellström, K.E.; Hellström, I. Adv Cancer Res 12 (1969) 167.PubMedCrossRefGoogle Scholar
  5. 5.
    Prehn, R.T. Science 176 (1972) 170.PubMedCrossRefGoogle Scholar
  6. 6.
    Gorczynski, R.M. J Immunol 112 (1974) 1826.PubMedGoogle Scholar
  7. 7.
    Kirchner, H. et al. J Exp Med 139 (1974) 1473.PubMedCrossRefGoogle Scholar
  8. 8.
    Broder, S. et al. J Natl Cancer Inst 61 (1978) 5.PubMedGoogle Scholar
  9. 9.
    Cerottini, J.C.; Bruner, K.T. Adv Immunol 18 (1974) 67.PubMedCrossRefGoogle Scholar
  10. 10.
    Herberman, R.B. et al. J Natl Cancer Inst 51 (1973) 1509.PubMedGoogle Scholar
  11. 11.
    LeClerc, J.C. et al. Int J Cancer 11 (1973) 426.PubMedCrossRefGoogle Scholar
  12. 12.
    Gorczynski, R.M. J Immunol 112 (1974) 533.PubMedGoogle Scholar
  13. 13.
    Berenson, J.R. et al. J Immunol 115 (1975) 234.PubMedGoogle Scholar
  14. 14.
    Glaser, M. et al. J Immunol 116 (1976) 1507.PubMedGoogle Scholar
  15. 15.
    Blasecki, J.W. J Immunol 119 (1977) 1621.PubMedGoogle Scholar
  16. 16.
    Levy, M.H.; Wheelock, E.F. Adv Cancer Res 20 (1974) 131.PubMedCrossRefGoogle Scholar
  17. 17.
    Kiessling, R.; Haller, O. In: Contemporary Topics in Immuno-biology, 8, ed. Hanna. Plenum Press, New York (1978) 171.CrossRefGoogle Scholar
  18. 18.
    Herberman, R.B.; Holden, H.T. Adv Cancer Res 27 (1978) 305.PubMedCrossRefGoogle Scholar
  19. 19.
    Datta, S.K. et al. Int J Cancer 23 (1979) 728.PubMedCrossRefGoogle Scholar
  20. 20.
    Law, L.W.; Dawe, C.J. Proc Soc Exp Biol Med 105 (1960) 414.PubMedGoogle Scholar
  21. 21.
    Vandeputte, M. et al. Life Sci 2 (1963) 475.CrossRefGoogle Scholar
  22. 22.
    Agnew, H.D. Proc Soc Exp Biol Med 125 (1967) 132.PubMedGoogle Scholar
  23. 23.
    Vandeputte, M. Transplant Proc 1 (1969) 100.PubMedGoogle Scholar
  24. 24.
    Allison, A.C.; Law, L.W. Proc Soc Exp Biol Med 127 (1968) 207.PubMedGoogle Scholar
  25. 25.
    Mathe, G. et al. Br J Cancer 23 (1969) 814.PubMedCrossRefGoogle Scholar
  26. 26.
    Larson, CL. et al. Proc Soc Exp Biol Med 140 (1972) 700.PubMedGoogle Scholar
  27. 27.
    Woodruff, M.F.A. Transplant Proc 7 (1975) 229.PubMedGoogle Scholar
  28. 28.
    Vandeputte, M. et al. Eur J Cancer 6 (1970) 323.PubMedGoogle Scholar
  29. 29.
    Law, L.W. et al. Proc Natl Acad Sci USA 57 (1967) 1068.PubMedCrossRefGoogle Scholar
  30. 30.
    Fefer, A. Int J Cancer 5 (1970) 327.PubMedCrossRefGoogle Scholar
  31. 31.
    Vandeputte, M.; Datta, S.K. Eur J Cancer 8 (1972) 1.PubMedGoogle Scholar
  32. 32.
    Hatch, G.G. et al. Fed Proc 29 (1970) 371.Google Scholar
  33. 33.
    Hirsch, M.S. et al. J Immunol 108 (1972) 649.PubMedGoogle Scholar
  34. 34.
    Burton, R.C. et al. Br J Cancer 37 (1978) 806.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Surjit K. Datta
    • 1
  • John J. Trentin
    • 1
  • Kenneth J. McCormick
    • 1
  1. 1.Division of Experimental BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations