Advertisement

Natural Cytotoxicity by Hamster Lymphoid Cells for Virus-Infected and Transformed Cells

  • Robert N. Lausch
  • Nancy Patton
  • Donna Walker
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 134)

Abstract

Cell-mediated immunity is a significant aspect of the host response to herpes simplex virus (HSV) infection. Several investigators have shown that adoptive transfer of immune T lymphocytes will protect mice against virus challenge (1,2,3). More recently, in vitro studies have shown that draining lymph node (4,5) or spleen cells (6) from virus-sensitized hosts were specifically cytotoxic for HSV-infected cells. Substantial levels of lysis usually were not seen, however, unless the effector cells, identified as T lymphocytes (6,7) first had experienced some form of experimental manipulation such as incubation in vitro for a number of days.

Keywords

Herpes Simplex Virus Herpes Simplex Virus Type Peripheral Blood Lymphocyte Natural Cytotoxicity Decyl Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ennis, F.A. Infect Immun 7 (1973) 898.PubMedGoogle Scholar
  2. 2.
    Oakes, J.E. Infect Immun 12 (1975) 166.PubMedGoogle Scholar
  3. 3.
    Rager-Zisman, B.; Allison, A.C. J Immunol 116 (1976) 35.PubMedGoogle Scholar
  4. 4.
    Hay, K.A.; Lausch, R.N. Int J Cancer 23 (1979) 337.PubMedCrossRefGoogle Scholar
  5. 5.
    Pfizenmaier, K. et al. Immunology 119 (1977) 939.Google Scholar
  6. 6.
    Lawman, M.J.P. et al. Infect Immun 27 (1980) 133.PubMedGoogle Scholar
  7. 7.
    Pfizenmaier, K. et al. Nature 265 (1977) 630.PubMedCrossRefGoogle Scholar
  8. 8.
    Herberman, R.B. et al. Int J Cancer 16 (1975) 216.PubMedCrossRefGoogle Scholar
  9. 9.
    Kiessling, R. et al. Eur J Immunol 5 (1975) 112.PubMedCrossRefGoogle Scholar
  10. 10.
    Herberman, R.B.; Holden, H.T. Adv Cancer Res 27 (1978) 305.PubMedCrossRefGoogle Scholar
  11. 11.
    Nahmias, A.J. et al. Proc Soc Exp Biol Med 134 (1970) 1065.PubMedGoogle Scholar
  12. 12.
    McCormick, K.J.; Trentin, J.J. Prog Exp Tumor Res 23 (1979) 13.PubMedGoogle Scholar
  13. 13.
    Lausch, R.H.; Rapp, F. Int J Cancer 7 (1971) 322.PubMedCrossRefGoogle Scholar
  14. 14.
    Duff, R.; Rapp, F. J Virol 12 (1973) 209.PubMedGoogle Scholar
  15. 15.
    Rapp, F.; Duff, R. Cancer Res 33 (1973) 1527.PubMedGoogle Scholar
  16. 16.
    Laux, D.; Lausch, R.N. J Immunol 112 (1974) 1900.PubMedGoogle Scholar
  17. 17.
    Datta, S.K. et al. Int J Cancer 23 (1979) 728.PubMedCrossRefGoogle Scholar
  18. 18.
    Shore, S.L. et al. Nature 251 (1974) 350.PubMedCrossRefGoogle Scholar
  19. 19.
    Rager-Zisman, B.; Bloom, B.R. Nature 251 (1974) 542.PubMedCrossRefGoogle Scholar
  20. 20.
    Gee, S.R. et al. J Immunol 123 (1979) 2618.PubMedGoogle Scholar
  21. 21.
    Herberman, R.B. et al. Immunol Rev 44 (1979) 43.PubMedCrossRefGoogle Scholar
  22. 22.
    Santoli, D. et al. J Immunol 121 (1978) 526.PubMedGoogle Scholar
  23. 23.
    Santoli, D. et al. J Immunol 121 (1978) 532.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Robert N. Lausch
    • 1
  • Nancy Patton
    • 1
  • Donna Walker
    • 1
  1. 1.Department of Microbiology and Immunology, College of MedicineUniversity of South AlabamaMobileUSA

Personalised recommendations