High Pressure Adsorption Isotherms of Neon, Hydrogen, and Helium at 76°K

  • A. J. Kidnay
  • M. J. Hiza
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 12)


The cryogenic engineer often is confronted with the problem of separating a gas mixture, or of removing undesirable trace components from a gas stream to be used in a refrigerator or a liquefier. When a physical adsorption process is used to achieve this separation or purification, a knowledge of the high pressure adsorption isotherms of the components in the mixture often is required. Unfortunately, very few measurements have been made on the adsorption of gases at pressures greater than 1 atm and at temperatures below 100°K. Only the limited measurements of Czaplinski and Zielinski [1], Knorn [2], and Cook [3] are available. The work presented here was undertaken to help fill the gap in the existing measurements.


Adsorption Isotherm Quadrupole Moment Adsorbed Phase Adsorbed Material Synthetic Zeolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Czaplinski and E. Zielinski, Przemysl Chem. 37:640 (1958).Google Scholar
  2. 2.
    M. Knorn, Monats. Akad. Wiss. (Berlin) 3:15 (1961).Google Scholar
  3. 3.
    W. H. Cook, Ph.D. Dissertation, Univ. of Ottawa (1965).Google Scholar
  4. 4.
    R. D. Goodwin, D. E. Diller, H. M. Roder, and L. A. Weber, NBS J. Res. 67A:173 (1963).CrossRefGoogle Scholar
  5. 5.
    J. W. Dean, NBS Tech. Note 120 (Nov. 1961).Google Scholar
  6. 6.
    R. D. McCarty and R. B. Stewart, in: Advances in Thermophysical Properties at Extreme Temperatures and Pressures, ASME, New York (1965), p. 84.Google Scholar
  7. 7.
    D. B. Mann, NBS Tech. Note 154 (Jan. 1962).Google Scholar
  8. 8.
    A. J. Kidnay and M. J. Hiza, J. Phys. Chem., 67:1725 (1963).CrossRefGoogle Scholar
  9. 9.
    A. S. Coolidge, J. Am. Chem. Soc, 56:554 (1934).CrossRefGoogle Scholar
  10. 10.
    M. M. Dubinin, Chem. Rev., 60:235 (1960).CrossRefGoogle Scholar
  11. 11.
    W. H. Cook and D. Basmadjian, Can. J. Chem. Eng., 42:146 (1964).CrossRefGoogle Scholar
  12. 12.
    A. van Itterbeek and W. van Dingenen, Physica, 4: 1169 (1937).CrossRefGoogle Scholar
  13. 13.
    A. van Itterbeek and W. van Dingenen, Physica, 5:529 (1938).CrossRefGoogle Scholar
  14. 14.
    W. van Dingenen and A. van Itterbeek, Physica, 6:49 (1939).CrossRefGoogle Scholar
  15. 15.
    A. van Itterbeek, W. van Dingenen, and J. Borghs, Physica, 6:951 (1939).CrossRefGoogle Scholar
  16. 16.
    A. D. Buckingham, Quart. Rev. (London), 13:183 (1959).CrossRefGoogle Scholar
  17. 17.
    L. E. Drain, Trans. Far. Soc. 49:650 (1953).CrossRefGoogle Scholar
  18. 18.
    R. J. Grant and M. Manes, Ind. Eng. Chem. Fund., 3:221 (1964).CrossRefGoogle Scholar
  19. 19.
    W. K. Lewis, E. R. Gilliland, B. Chertow, and W. P. Cadogan, Ind. Eng. Chem., 42:1326 (1950).CrossRefGoogle Scholar
  20. 20.
    F. D. Maslan, M. Altman, and E. R. Aberth, J. Phys. Chem., 57:106 (1953).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1967

Authors and Affiliations

  • A. J. Kidnay
    • 1
  • M. J. Hiza
    • 1
  1. 1.Cryogenics Division-NBSInstitute for Materials ResearchBoulderUSA

Personalised recommendations