Pressure Drop of Two-Phase Single Component Isothermal Upward Flow of Nitrogen and Methane at High Pressures

  • A. Lapin
  • E. Bauer
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 12)


The simultaneous flow of liquid and vapor occurs in liquefaction plants. Because of the interaction of the phases with one another and the reduction of flow area for each phase, the pressure drop in a two-phase flow stream is considerably higher than the single-phase pressure drop. The determination of pressure drop for a single-phase flowing inside pipes is well established. There are several methods which enable prediction of pressure drop to well within ±15% [1,7,9].


Pressure Drop Heat Shield Frictional Pressure Drop Pressure Drop Characteristic Helically Coil Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. L. Badger and J. T. Banchero, Introduction to Chemical Engineering, McGraw-Hill Book Co., New York (1955), p. 43.Google Scholar
  2. 2.
    O. Baker, Oil and Gas J. 185 (June 26, 1954).Google Scholar
  3. 3.
    O. Baker, Oil and Gas J. 156 (November 10, 1958).Google Scholar
  4. 4.
    A. F. Bertuzzi, M. R. Tek, and F. H. Poettmann, Pet. Trans. AIME 207:17 (1956).Google Scholar
  5. 5.
    J. A. Chavez, Oil and Gas J. 100 (August 29, 1959).Google Scholar
  6. 6.
    J. M. Chenoweth and M. W. Martin, Pet. Ref., 34(10):151 (1955).Google Scholar
  7. 7.
    S. Crocker, Piping Handbook, 4th ed., McGraw-Hill Book Co., New York (1945), p. 112.Google Scholar
  8. 8.
    A. E. Dukler, M. Wicks III, and R. G. Cleveland, A.I.Ch.E. J. 10(1):38; 44 (1964).Google Scholar
  9. 9.
    “Flow of Fluids through Valves, Fittings, and Pipe,” Engineering and Research Div., Crane Company, Chicago, Technical Paper No. 409 (May 1942), p. 6.Google Scholar
  10. 10.
    G. A. Hughmark, I & EC Fundamentals 2(4):315 (1963).CrossRefGoogle Scholar
  11. 11.
    E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill Book Co., Inc., New York (1938), p. 160.Google Scholar
  12. 12.
    R. W. Lockhart and R. C. Martinelli, Chem. Eng. Progr., 45:39 (1949).Google Scholar
  13. 13.
    R. C. Martinelli, L. M. K. Boelter, T. H. M. Taylor, E. G. Thomsen, and E. H. Mozzin, Trans. ASME 66:139 (1944).Google Scholar
  14. 14.
    R. C. Martinelli and D. B. Nelson, Trans. ASME, 70:695 (1958).Google Scholar
  15. 15.
    R. N. Meier, “Pressure Drop in Helically Coiled Tubes,” M.S. Thesis, Lehigh University (1960).Google Scholar
  16. 16.
    A. B. Metzner, A.I.Ch.E. I. 1(4):434 (1955).CrossRefGoogle Scholar
  17. 17.
    G. R. Rippel, C. M. Eidt, Jr., and H. B. Jordan, Jr., I & EC Process Design and Development, 5(1):32 (1966).CrossRefGoogle Scholar
  18. 18.
    J. D. Rogers, A.I.Ch.E. J. 2(4):536 (1956).CrossRefGoogle Scholar
  19. 19.
    V. L. Streeter, Handbook of Fluid Dynamics, McGraw-Hill Book Co., New York (1961), sec. 17–1 to 17–24.Google Scholar

Copyright information

© Springer Science+Business Media New York 1967

Authors and Affiliations

  • A. Lapin
    • 1
  • E. Bauer
    • 2
  1. 1.Air Products and Chemicals, Inc.AllentownPennsylvaniaUSA
  2. 2.Bethlehem Steel CompanyBethlehemUSA

Personalised recommendations