Skip to main content

Pool Boiling of Methane between Atmospheric Pressure and the Critical Pressure

  • Conference paper
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 12))

Abstract

An exhaustive analysis of the literature of pool boiling heat transfer to cryogenic liquids by Brentari, Giarratano, and Smith [4] led to the following conclusions:

  1. 1.

    Predictive correlations for nucleate boiling at high pressures are of marginal success.

  2. 2.

    Peak flux predictions are inaccurate at reduced pressures above 0.6.

  3. 3.

    Insufficient data are available to discuss the effect of pressure on film boiling.

  4. 4.

    More detailed and better controlled experiments are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Berenson, J. Heat Transfer 83(3):351 (1961).

    Article  Google Scholar 

  2. P. J. Berenson, “Transition Boiling Heat Transfer from a Horizontal Surface,” M.I.T. Heat Transfer Laboratory Technical Report No. 17 (March 1960).

    Google Scholar 

  3. B. P. Breen and J. W. Westwater, Chem. Eng. Progr. 58(7):67 (1962).

    Google Scholar 

  4. E. G. Brentari, P. J. Giarratano, and R. V. Smith, “Boiling Heat Transfer for Oxygen, Nitrogen, Hydrogen, and Helium,” NBS TN 317 (September 1965).

    Google Scholar 

  5. L. A. Bromley, Chem. Eng. Progr. 46(5):221 (1950).

    Google Scholar 

  6. L. A. Bromley, R. S. Brodkey, and N. Fishman, Ind. Eng. Chem., 44:2966 (1952);

    Article  Google Scholar 

  7. L. A. Bromley, R. S. Brodkey, and N. Fishman, Ind. Eng. Chem., 45:2639 (1953).

    Article  Google Scholar 

  8. Y. P. Chang, J. Heat Transfer 81(1):1 (1959).

    Google Scholar 

  9. E. A. Farber and R. L. Scorah, Trans. ASME 70:369 (1948).

    Google Scholar 

  10. K. Forster and R. Greif, J. Heat Transfer 81(1):43 (1959).

    Google Scholar 

  11. T. H. K. Frederking, Y. C. Wu, and B. W. Clement, A.I.Ch.E. J. 12(2):238 (1966).

    Article  Google Scholar 

  12. T. Kistemaker, Physica 29:351 (1963).

    Article  Google Scholar 

  13. S. S. Kutateladze, Heat Transfer in Condensation and Boiling, AEC Translation 3770, Tech. Inf. Service, Oak Ridge, Tenn. (1959).

    Google Scholar 

  14. J. H. Lienhard and P. T. Y. Wong, J. Heat Transfer 86(2):220 (1964).

    Article  Google Scholar 

  15. J. Madejski, Int. J. Heat and Mass Transfer 8(1):155 (1965).

    Article  Google Scholar 

  16. H. Merte, Jr. and J. A. Clark, J. Heat Transfer 86(3):351 (1964).

    Article  Google Scholar 

  17. R. Moissis and P. J. Berenson, J. Heat Transfer 85(3):221 (1963).

    Article  Google Scholar 

  18. R. C. Noyes, J. Heat Transfer 85:125 (1963).

    Article  Google Scholar 

  19. R. C. Noyes and H. Lurie, “Boiling Studies for Sodium Reactor Safety, Part II,” A.E.C. R&D Report NAA-SR-9477, Atomics International, Div. of North American Aviation, Inc. (October 15, 1964).

    Google Scholar 

  20. E. L. Park, Jr., C. P. Colver, and C. M. Sliepcevich, in: Advances in Cryogenic Engineering, Vol. 11, Plenum Press, New York (1966), p. 516.

    Book  Google Scholar 

  21. W. M. Rohsenow, Trans. ASME 74:969 (1952).

    Google Scholar 

  22. W. M. Rohsenow and P. Griffith, Chem. Eng. Progr. Symposium Series 52(18):47 (1956).

    Google Scholar 

  23. E. M. Sparrow, Int. J. Heat and Mass Transfer 7(2):229 (1964).

    Article  Google Scholar 

  24. N. Zuber, “Hydrodynamic Aspects of Boiling Heat Transfer,” AEC Report No. AECU-4439, Physics and Mathematics (June 1959), p. 82.

    Book  Google Scholar 

  25. N. Zuber and M. Tribus, “Further Remarks on the Stability of Boiling Heat Transfer,” UCLA Report No. 58–5 (January 1958).

    Book  Google Scholar 

  26. J. R. Brock and R. B. Bird, A.I.Ch.E.J. 1(2): 174(1955)

    Article  Google Scholar 

  27. G. W. Swift, L. Lohrenz, and F. Kurata, A.I.Ch.E.J. 6(3):415 (1960)

    Article  Google Scholar 

  28. A. L. Lee, K. E. Starling, J. P. Dolan, and R. T. Ellington, A.I.Ch.E.J. 10(5) (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer Science+Business Media New York

About this paper

Cite this paper

Sciance, C.T., Colver, C.P., Sliepcevich, C.M. (1967). Pool Boiling of Methane between Atmospheric Pressure and the Critical Pressure. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0489-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0489-1_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0491-4

  • Online ISBN: 978-1-4757-0489-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics