As a result of the development of spectral methods for interpreting seismic data in recent years [1–6], many methods for computing the spectral characteristics for various representations of layered media have been developed for waves of different types. Analyses have also been made of the properties of the spectral characteristics computed for several representations of the medium. Spectral characteristics have been established for the case of the wave incident on a planar layer consisting of sinusoids. Primarily, the methods which have been developed are valid for determining the spectral characteristic for normal incidence and longitudinal reflection of waves [7–12]. In some of the previous work, methods have been presented for computing the spectral characteristics of a layered medium for the case of inclined wave incidence either using the principle of geometric optics [12, 13] or expressions for wave propagation in a continuous, ponderable medium [14–16]. The method described in references [14, 16] allows the determination of the spectral characteristic for reflected and transmitted waves: longitudinal, volume, and transverse. Here, we will consider only the case of normal incidence of waves on a layer or sequence of layers.


Spectral Characteristic Transit Time Amplitude Spectrum Acoustic Impedance Average Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. L. Khudzinskii, On determining some properties of layers of intermediate thickness from the spectrum of reflected waves, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 5 (1961).Google Scholar
  2. 2.
    I. S. Berzon, A. M. Epinat’eva, G. N. Pariiskaya, and S. P. Starodubrovskaya, Dynamic Characteristics of Seismic Waves in Real Media, Izd. Akad. Nauk SSSR, 1962.Google Scholar
  3. 3.
    S. P. Starodubrovskaya and G. N. Pariiskaya, Use of the dynamic characteristics of reflected waves for identifying and tracing of variable thickness, Razvedochnaya Geofiz., No. 2 (1964).Google Scholar
  4. 4.
    I. S. Berzon, On determining models of thin-layered media for the combined use of the amplitude and phase spectrums of layers, Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 6 (1965).Google Scholar
  5. 5.
    L. L. Khudzinskii, Description of the use of spectral analysis in seismic exploration, in: Deep Seismic Sounding of the Earth’s Crust in the USSR, Gostoptekhizdat, 1961.Google Scholar
  6. 6.
    N. E. Grin, On the question of the spectrums of waves reflected from inclined layers, Tr. Inst. Geofiz. Akad. Nauk SSSR, No. 7 (1964).Google Scholar
  7. 7.
    I. I. Gurvich, On reflections from thin layers in seismic exploration, Prikl. Geofiz., No. 9 (1952).Google Scholar
  8. 8.
    I. S. Berzon, On some spectral characteristics of waves reflected from thin layers, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 5 (1959).Google Scholar
  9. 9.
    J. G. J. Scholte, Propagation of waves in inhomogeneous media, Geophys. Prospecting, 9(1) (1961).Google Scholar
  10. 10.
    L. H. Berryman, P. L. Goupillard, and K. H. Waters, Reflections from multiple transition layers, Geophysics, 24(2) (1959).Google Scholar
  11. 11.
    N. G. Mikhailova, B. S. Pariiskii, and M. V. Saks, Frequency spectrum of a sequence of layers, Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 1 (1966).Google Scholar
  12. 12.
    O.K. Kondrat’ev, Analytic solution of the problem of reflection from some inhomogeneous layers, Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 8 (1965).Google Scholar
  13. 13.
    L. M. Brekhovskikh, Waves in Layered Media, Izd. Akad. Nauk SSSR, 1967.Google Scholar
  14. 14.
    G. S. Pod’yapol’skii, Coefficients for refraction and reflection of elastic waves on a layer, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 4 (1961).Google Scholar
  15. 15.
    J. G. J. Scholte, Oblique propagation of waves in inhomogeneous media, Geophys. J. (of the Roy. Astr. Soc.), 7(2) (1962).Google Scholar
  16. 16.
    L. I. Ratnikova and A. L. Levshin, Calculation of the spectrum of a thin layered medium (oblique incidence), Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 2 (1967).Google Scholar
  17. 17.
    R. Bortfield, Seismic waves in transition layers, Geophys. Prospecting, Vol. 8 (1960).Google Scholar
  18. 18.
    J. Chauveau, Contribution a l’etude de la deformation du signal seismique Analogies Filtrage equivalent, Geophys. Prospecting, 10(4) (1962).Google Scholar
  19. 19.
    L. L. Khudzinskii, On determining some spectral characteristics of layered media, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 3 (1962).Google Scholar
  20. 20.
    B. I. Bespyatov, Frequency method for studying the conditions for formation of reflections from thin-layered media, Tr. Nizhnevol. Nauchno-Issled. Inst. Geolog. i Geofiz., Vol. 1 (1964).Google Scholar
  21. 21.
    V. S. Isaev, Results of the application of grouping theory for the study of periodic sequences of layers, Prikl. Geofiz., No. 49 (1967) [English translation: Exploration Geophysics, Vol. 49, Consultants Bureau, New York, 1969].Google Scholar
  22. 22.
    N. G. Mikhailova and B. S. Pariiskii, Computation of synthetic seismograms for simplified cases of structure in the medium with normal incidence, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 1 (1964).Google Scholar
  23. 23.
    I. I. Gurvich, Seismic Exploration, Gostoptekhizdat, 1960.Google Scholar
  24. 24.
    A. A. Kharkevich, Spectra and Analysis, GITTL, 1957 [English translation: Consultants Bureau, New York, 1960].Google Scholar
  25. 25.
    T. G. Rautian and L. S. Samoilova, On the basis for computing energy density by the method of approximating a seismic trace by segments of sinusoids, Tr. Inst. Fiz. Zemli, “Fizika Zemletryasenii i Seismika Vzryvov,” No. 25:192 (1962).Google Scholar

Copyright information

© Consultants Bureau, New York 1969

Authors and Affiliations

  • I. S. Berzon

There are no affiliations available

Personalised recommendations