Piezoelectric Transducer Materials and Techniques for Ultrasonic Devices Operating above 100 MHz

  • A. H. Meitzler
Part of the Ultrasonic Technology book series (ULTE)


In the field of ultrasonics, the frequency range above 100 MHz was until a few years ago largely the province of research scientists concerned with studies of acoustic losses in solids. However, this frequency range has since become important for engineers concerned with certain ultrasonic devices such as dispersive and nondispersive ultrasonic delay lines, ultrasonic light deflectors, and ultrasonic light modulation devices. There are already in existence practical ultrasonic delay lines(1) for the storage of digital data signals at bit rates as high as 100 Mbits/sec. Similarly, light modulators(2) and light deflectors(3,4) operating at frequencies of several hundred MHz have been built and light modulators, light deflectors, and delay lines requiring total 3 dB bandwidths of several hundred MHz are within the reach of existing technological capabilities.


Insertion Loss Lithium Niobate Piezoelectric Transducer Coupling Factor Ultrasonic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. K. Sittig and H. D. Cook, “A method for preparing and bonding ultrasonic transducers used in high-frequency digital delay lines,” Proc. IEEE 56, 1375–1376 (1968).CrossRefGoogle Scholar
  2. 2.
    A. H. Meitzler, “Advances in the use of ferroelectric materials as high-frequency piezoelectric transducers,” paper presented at IEEE-CUA Symposium on Applications of Ferroelectrics, Washington, D.C., October 10–11, 1968.Google Scholar
  3. 3.
    D. Maydan, “Acoustooptical pulse modulators,” paper presented at 1969 Conference on Laser Engineering and Applications, Washington, D.C., May 26–28, 1969.Google Scholar
  4. 4.
    D. A. Pinnow, “A solid-state acoustooptic light deflector,” paper presented at 1969 Conference on Laser Engineering and Applications, Washington, D.C., May, 1969.Google Scholar
  5. 5.
    W. P. Mason, Electromechanical Transducers and Wave Filters, D. Van Nostrand Co., Inc., New York (1942, 1948), 2nd Ed., pp. 399–404.Google Scholar
  6. 6.
    J. E. May Jr., “Characteristics of delay lines using quartz and barium titanate transducers,”J.Acous. Soc. Am. 26, 347–355 (1954).CrossRefGoogle Scholar
  7. 7.
    H. J. McSkimin, “Transducer design for ultrasonic delay lines,”J.Acous. Soc. Am. 27, 302–309 (1955).CrossRefGoogle Scholar
  8. 8.
    W. F. Konig, L. B. Lambert, and D. L. Schilling, “The bandwidth, insertion loss, and reflection coefficient of ultrasonic delay lines for backing materials and finite thickness bonds,” IRE International Convention Record 9, pt. 6, 285–295 (1961).Google Scholar
  9. 9.
    M. Onoe and A. H. Meitzler, “Effect of high electromechanical coupling on characteristics of piezoelectric transducers,” Paper N44, Fourth International Congress on Acoustics, August 21–28, 1962.Google Scholar
  10. 10.
    C. F. Brockelsby, J. S. Palfreeman, and R. W. Gibson, Ultrasonic Delay Lines, Iliffe Book Ltd., London (1963).Google Scholar
  11. 11.
    E. K. Sittig, “Transmission parameters of thickness-driven piezoelectric transducers arranged in multilayer configurations,” IEEE Trans. on Sonics and Ultrasonics SU-14, 167–174 (1967).CrossRefGoogle Scholar
  12. 12.
    A. J. Bahr and Ian N. Court, “Determination of the electromechanical coupling coefficient of thin-film cadmium sulfide,”J.Appl. Phys. 39, 2863–2868 (1968).CrossRefGoogle Scholar
  13. 13.
    E. K. Sittig, “Effects of bonding and electrode layers on the transmission parameters of piezoelectric transducers used in ultrasonic delay lines,” IEEE Trans. on Sonics and Ultrasonics SU-16, 2–10 (1969).CrossRefGoogle Scholar
  14. 14.
    A. H. Meitzler and E. K. Sittig, “Characterization of piezoelectric transducers used in ultrasonic devices operating above 0.1 GHz,”J.Appl. Phys., 40, 4341–4352 (1969).CrossRefGoogle Scholar
  15. 15.
    E. K. Sittig, “High-speed ultrasonic digital delay line design: a restatement of some basic considerations,” Proc. IEEE 56, 1194–1202 (1968).CrossRefGoogle Scholar
  16. 16.
    N. F. Foster, G. A. Coquin, G. A. Rozgonyi, and F. A. Vannatta, “Cadmium sulfide and zinc oxide thin-film transducers,” IEEE Trans. on Sonics and Ultrasonics SU-15, 28–41 (1968).CrossRefGoogle Scholar
  17. 17.
    D. Berlincourt, “Delay line transducer materials,” 1967 IEEE International Convention Record, Part 11, 61–68 (1967).Google Scholar
  18. 18.
    A. W. Warner and A. H. Meitzler, “Performance of bonded single-crystal LiNbO3 and LiGaO2 as ultrasonic transducers operating above 100 MHz,” Proc. IEEE 56, 1376–1377 (1968).CrossRefGoogle Scholar
  19. 19.
    E. K. Sittig, A. W. Warner and H. D. Cook, “Bonded piezoelectric transducers for frequencies beyond 100 MHz,” Ultrasonics 7, 108–112 (1969).CrossRefGoogle Scholar
  20. 20.
    J. de Klerk and E. F. Kelley, “Coherent phonon genration in the gigacycle range via insulating cadmium sulfide films,” Appl. Phys. Letters 5 (1964).Google Scholar
  21. 21.
    N. F. Foster, “Ultrahigh frequency cadmium sulfide transducers,” IEEE Trans. on Sonics and Ultrasonics SU-11, 63–68 (1964).Google Scholar
  22. 22.
    N. F. Foster, “Piezoelectric and piezoresistive films,” in Handbook of Thin Film Technology, McGraw-Hill, New York (1970), Chap. 15.Google Scholar
  23. 23.
    A. R. Hutson, J. H. McFee, and D. L. White, “Ultrasonic amplification in CdS,” Phys. Rev. Letters 7, 237–239 (1961).CrossRefGoogle Scholar
  24. 24.
    D. L. White, “Amplification of ultrasonic waves in piezoelectric semiconductors,” J. Appl. Phys. 33, 2547–2554 (1962).CrossRefGoogle Scholar
  25. 25.
    D. L. White, “Depeltion layer transducer—a new high-frequency ultrasonic transducer,” 1961 IRE International Convention Record, pt. 6, 9, 304–309 (1961).Google Scholar
  26. 26.
    D. L. White, in Physical Acoustics (W. P. Mason, ed.), Vol. I, Part B, Academic Press Inc., New York (1964), pp. 321–352.Google Scholar
  27. 27.
    N. F. Foster, “Diffusion layer ultrasonic transducers,”J.Appl. Phys. 34, 990–991 (1963).CrossRefGoogle Scholar
  28. 28.
    F. S. Hickernell and D. E. Allen, “A GaAs diffusion layer transducer delay line,” Proc. IEEE 53, 1735 (1965).CrossRefGoogle Scholar
  29. 29.
    N. Chubachi, H. Aoki, T. Seki, M. Wada, and Y. Kikuchi, CdSe diffusion layer transducer, Acoustical Society of Japan (May 1966).Google Scholar
  30. 30.
    Y. Kikuchi, N. Chubachi, and H. Sasaki, Zinc oxide diffusion layer transducer, Acoustical Society of Japan (November 1966).Google Scholar
  31. 31.
    F. S. Hickernell, “Diffusion layer transduction in semiconducting zinc oxide,” Paper G3 presented at IEEE Ultrasonics Symposium, Vancouver, Canada, October 4–6, 1967.Google Scholar
  32. 32.
    F. S. Hickernell, “Piezoelectric semiconductor acoustic delay lines,” IEEE Trans. on Microwave Theory and Techniques MTT-17, 957–963 (1969).Google Scholar
  33. 33.
    R. A. Laudise, E. D. Kolb, and A. J. Caporaso, “Properties of lithium-doped hydrothermally-grown single crystals of zinc oxide”,J.Am. Ceramics Soc. 48, 342 (1965).CrossRefGoogle Scholar
  34. 34.
    H. Jaffe and D. Berlincourt, “Piezoelectric transducer materials”, Proc. IEEE 53, 1372–1386(1965).CrossRefGoogle Scholar
  35. 35.
    C. Solbrig, “Piezoelectric measurements on zinc oxide crystals,” Z. Phys. 184, 293–298 (1965).CrossRefGoogle Scholar
  36. 36.
    D. F. Crisler, J. J. Cupal, and A. R. Moore, “Dielectric piezoelectric and electromechanical coupling constants of zinc-oxide crystals,” Proc. IEEE 56, 225–226 (1968).CrossRefGoogle Scholar
  37. 37.
    R. T. Smith, “Temperature dependence of the electromechanical constants of Lidoped ZnO,” paper presented at Acous. Soc. Am. 77th Meeting, Philadelphia, Penn., April 8–11, 1969.Google Scholar
  38. 38.
    J. T. Krause and W. R. Northover, U.S. Patent No. 3,413,187, “Glass bonding medium for ultrasonic devices,” Nov. 26, 1968.Google Scholar
  39. 39.
    F. I. Federov, Theory of Elastic Waves in Crystals, Springer Science+Business Media New York (1968). See Chap. 3.CrossRefGoogle Scholar
  40. 40.
    R. B. Wilson, “Precision polishing of thin single-crystal layers,” J. Sci. Instruments 44, 159 (1967).CrossRefGoogle Scholar
  41. 41.
    G. A. Bennett and R. B. Wilson, “Precision polishing technique for optics and microwave acoustics,” J. Sci. Instruments 43, 669–670 (1966).CrossRefGoogle Scholar
  42. 42.
    H. J. McSkimin, in Physical Acoustics (W. P. Mason, ed.), Vol. I, Part A, Academic Press Inc., New York (1964), pp. 271–334. (See especially p. 318.)Google Scholar
  43. 43.
    H. J. McSkimin, “Measurement of ultrasonic wave velocities for solids in the frequency range 100 to 500 MHz,”J.Acous. Soc. Am. 34, 404–409 (1962).CrossRefGoogle Scholar
  44. 44.
    J. Lamb, M. Redwood, and Z. Shteinshleifer, “Absorption of compressional waves in solids from 100 to 1000 MHz”, Phys. Rev. Letters 3, 28–29 (1959).CrossRefGoogle Scholar
  45. 45.
    E. G. Spencer, R. T. Denton, T. B. Bateman, W. B. Snow, and L. G. Van Uitert, “Microwave elastic properties of nonmagnetic garnets,”J.Appl. Phys. 34, 3059–3060 (1963).CrossRefGoogle Scholar
  46. 46.
    J. T. Krause, “Gold-indium bond for measurement of ultrasonic properties in solids at high temperatures,” J. Appl. Phys. 39, 5334–5335 (1968).CrossRefGoogle Scholar
  47. 47.
    A. H. Meitzler and A. H. Fitch, “The acoustoelastic effect in vitreous silica, Pyrex, and T-40 glass,” J. Appl. Phys. 40, 1614–1621 (1969).CrossRefGoogle Scholar
  48. 48.
    D. L. White, “β-quartz as a high-temperature piezoelectric material,”J.Acous. Soc. Am. 31, 311–314 (1959).CrossRefGoogle Scholar
  49. 49.
    H. M. Matthews and R. C. LeCraw, “Acoustic wave rotation by magnon-phonon interaction,” Phys. Rev. Letters 8, 397–399 (1963).CrossRefGoogle Scholar
  50. 50.
    J. P. Remeika and A. A. Ballman, “Flux growth, Czochralski growth, and hydro-thermal synthesis of lithium metagallate single crystals,” Appl. Phys. Letters 7, 180–181 (1964).CrossRefGoogle Scholar
  51. 51.
    A. W. Warner, “New piezoelectric materials,” in Proceedings of the 19th Annual Symposium on Frequency Control, April 1965, pp. 5–21.Google Scholar
  52. 52.
    A. A. Ballman, “The growth and properties of piezoelectric bismuth germanium oxide Bi12GeO20,” International J. Crystal Growth 1, 37–40 (1967).CrossRefGoogle Scholar
  53. 53.
    M. Onoe, A. W. Warner, and A. A. Ballman, “Elastic and piezoelectric characteristics of bismuth germanium oxide Bi12GeO20,” IEEE Trans. on Sonics and Ultrasonics SU-14, 165–167 (1967).CrossRefGoogle Scholar
  54. 54.
    E. J. Spencer, P. V. Lenzo, and A. A. Ballman, “Ultrasonic properties of bismuth germanium oxide,” Appl. Phys. Letters 9, 201–291 (1966).CrossRefGoogle Scholar
  55. 55.
    S. Haussühl, “Piezoelectric and electric behavior of lithium iodate” (in German), Phys. Stat. Sol. 29, K159–161 (1968).CrossRefGoogle Scholar
  56. 56.
    A. W. Warner, J. G. Bergman Jr., D. A. Pinnow, and G. R. Crane, “Piezoelectric and photoelastic properties of lithium iodate,” to be published, J.Acous. Soc. Am. (1970).Google Scholar
  57. 57.
    E. G. Spencer, P. V. Lenzo, and A. A. Ballman, “Dielectric material for electrooptic, elastooptic, and ultrasonic device applications,” Proc. IEEE 55, 2074–2108 (1967).CrossRefGoogle Scholar
  58. 58.
    A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique,”J.Am. Ceramic Soc. 48, 112 (1965).CrossRefGoogle Scholar
  59. 59a.
    K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations, and etching,” J.Phys. Chem. Solids 27, 983–988 (1966).CrossRefGoogle Scholar
  60. 59b.
    K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 2. Preparation of single-domain crystals,” J.Phys. Chem. Solids 27, 989–996 (1966).CrossRefGoogle Scholar
  61. 59c.
    S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, “Ferroelectric lithium niobate. 3. Single-crystal X-ray diffraction study at 24°C,”J.Phys. Chem. Solids 27, 997–1012 (1966).CrossRefGoogle Scholar
  62. 59d.
    S. C. Abrahams, W. C. Hamilton, and J. M. Reddy, “Ferroelectric lithium niobate. 4. Single-crystal neutron diffraction study at 24°C,” J. Phys. Chem. Solids 27, 1013–1018 (1966).CrossRefGoogle Scholar
  63. 59e.
    S. C. Abrahams, H. J. Levinstein, and J. M. Reddy, “Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24 and 1200°C,” J. Phys. Chem. Solids 27, 1019–1026 (1966).CrossRefGoogle Scholar
  64. 60.
    D. B. Fraser and A. W. Warner, “Lithium niobate: a high-temperature piezoelectric transducer material,”J.Appl Physics 37, 3853–3854 (1966).CrossRefGoogle Scholar
  65. 61.
    A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystal in class [3m],”J.Acous. Soc. Am. 42, 1223–1231 (1967).CrossRefGoogle Scholar
  66. 62.
    B. T. Matthias and J. P. Remeika, “Ferroelectricity in the ilmenite structure,” Phys. Rev. 76, 1886–1887 (1949).CrossRefGoogle Scholar
  67. 63.
    H. J. Levinstein, A. A. Ballman, and C. D. Capio, “Domain structure and Curie temperatures of single-crystal lithium tantalate,”J.Appl. Phys. 37, 4585 (1966).CrossRefGoogle Scholar
  68. 64.
    A. W. Warner and A. A. Ballman, “Low-temperature coefficient of frequency in a lithium tantalate resonator,” Proc. IEEE 55, 450 (1967).CrossRefGoogle Scholar
  69. 65.
    J. J. Rubin, L. G. Van Uitert, and H. J. Levinstein, “The growth of single-crystal niobates for electrooptic and nonlinear applications,” Int. J. Crys. Growth 1, 315 (1967).CrossRefGoogle Scholar
  70. 66.
    L. J. Van Uitert, J. J. Rubin, and W. A. Bonner, “Growth of Ba2NaNb5O15 single crystals for optical applications,” IEEE Trans. on Quantum Electronics QE-4, 622–627 (1968).CrossRefGoogle Scholar
  71. 67.
    J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, “The nonlinear optical properties of Ba2NaNb5O15,” Appl. Phys. Letters 11, 269–271 (1967).CrossRefGoogle Scholar
  72. 67a.
    J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, An error correction for the above paper, Appl. Phys. Letters 12, 224 (1968).CrossRefGoogle Scholar
  73. 68.
    A. W. Warner, G. A. Coquin, A. H. Meitzler, and J. L. Fink, “Piezoelectric properties of Ba2NaNb5O15,” Appl. Phys. Letters 14, 34–35 (1969).CrossRefGoogle Scholar
  74. 69.
    A. W. Warner, G. A. Coquin, and J. L. Fink, “Elastic and piezoelectric constants of Ba2NaNb5O15,”J.Appl. Phys. 40, 4353–4356 (1969).CrossRefGoogle Scholar
  75. 70.
    L. Egerton and D. M. Dillon, “Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate,”J.Amer. Ceramic Soc. 42, 438–442 (1959).CrossRefGoogle Scholar
  76. 71.
    L. Egerton and C. A. Bieling, “Isostatically hot-pressed sodium-potassium niobate transducer material for ultrasonic devices,” Am. Ceram. Soc. Bull. 47, 1151–1156 (1968).Google Scholar
  77. 72.
    D. Berlincourt, “Delay line transducer materials,” 1967 IEEE International Convention Record, Pt. 11, 61–68 (1967).Google Scholar
  78. 73.
    R. E. Dean, unpublished memorandum.Google Scholar
  79. 74.
    J. S. Jones, “VHF ultrasonic delay line bonding,” to be published in IEEE Trans. on Sonics and Ultrasonics. Google Scholar
  80. 75.
    D. R. Herriott, J. S. Jones, T. R. Meeker, and K. Reznicek, U.S. Patent No. 3,453, 166 “Method and apparatus for bonding transducer element,” July 1, 1969.Google Scholar
  81. 76.
    E. K. Sittig, unpublished data.Google Scholar
  82. 77.
    D. L. Arenberg, U.S. Patent No. 2,754,238, “Method of bonding and article thereby formed,” July 10, 1956.Google Scholar
  83. 78.
    D. Beecham, “Sputter machining of piezoelectric transducers,”J.Appl. Phys. 40, 4357–4361 (1969).CrossRefGoogle Scholar
  84. 79.
    N. F. Foster, “Crystallographic orientation of zinc oxide films deposited by triode sputtering,”J.Vacuum Science and Technology 6, 111–114 (1969).CrossRefGoogle Scholar
  85. 80.
    N. F. Foster and A. H. Meitzler, “Insertion loss and coupling factors in thin-film transducers,”J.Appl. Phys. 39, 4460–4461 (1968).CrossRefGoogle Scholar
  86. 81.
    N. F. Foster, Cadmium sulfide evaporated-layer transducers,Proc. IEEE 53, 1400–1405 (1965).CrossRefGoogle Scholar
  87. 82.
    J. de Klerk, “Thin-film piezoelectric transducers used as generators and detectors of microwave phonons, with some attenuation measurements in SiO2,”J.Appl. Phys. 37, 4522–4528 (1966).CrossRefGoogle Scholar
  88. 83.
    J. de Klerk and E. F. Kelley, “Vapor deposited thin-film piezoelectric transducers”, Rev. Sci. Instr. 36, 506 (1965).CrossRefGoogle Scholar
  89. 84.
    R. Weber, “Electron bombardment technique for deposition of CdS film transducers,” Rev. Sci. Instr. 37, 955–956 (1966).CrossRefGoogle Scholar
  90. 85.
    N. F. Foster, “Structure of CdS evaporated films in relation to their use as ultrasonic transducers,”J.Appl. Phys. 38, 149 (1967).CrossRefGoogle Scholar
  91. 86.
    R. M. Malbon, D. J. Walsh, and D. K. Winslow, “Zinc oxide film microwave acoustic transducers,” Appl. Phys. Letters 10, 9–10 (1967).CrossRefGoogle Scholar
  92. 87.
    S. Wanuga, T. A. Midford, and J. P. Dietz, “Zinc oxide film transducers,” paper presented at the IEEE Ultrasonics Symposium, Boston, Mass., December, 1965.Google Scholar
  93. 88.
    G. A. Rozgonyi and W. J. Polito, “Preparation of ZnO thin films by sputtering of the compound in oxygen-argon,” Appl. Phys. Letters 8, 220–221 (1966).CrossRefGoogle Scholar
  94. 89.
    H. D. Cook, unpublished work.Google Scholar
  95. 90.
    D. L. Denburg and F. A. Vannatta, “Wide-band high-coupling ZnO transducers for microwave delay lines and optical modulators,” paper presented at the 1969 IEEE Ultrasonics Symposium, St. Louis, Missouri, September, 1969.Google Scholar
  96. 91.
    M. T. Wauk and D. K. Winslow, “Vacuum deposition of A1N acoustic transducers,” Appl. Phys. Letters 13, 286–288 (1968).CrossRefGoogle Scholar
  97. 92.
    C. E. Land and P. D. Thacher, “Ferroelectric ceramic electrooptic materials and devices,” Proc. IEEE 57, 751–768 (1969).CrossRefGoogle Scholar
  98. 93.
    J. R. Maldonado and A. H. Meitzler, “Ferroelectric ceramic light gates operated in a voltage-controlled mode,” IEEE Trans. Electron Devices, ED-17,148–157 (1970).CrossRefGoogle Scholar
  99. 94.
    Tomoya Ogawa, “Estimation of the spontaneous polarization of hexagonal ZnS, CdS and ZnO crystals,”J.Phys. Soc. Japan 25, 1126–1128 (1968).CrossRefGoogle Scholar
  100. 95.
    N. F. Foster, “The deposition and piezoelectric characteristics of sputtered lithium niobate films,”J.Appl. Phys. 40, 420–421 (1969).CrossRefGoogle Scholar
  101. 96.
    M. Onoe, H. F. Tiersten, and A. H. Meitzler, “Shift in location of resonant frequencies caused by large electromechanical coupling in thickness-mode resonators”,J.Acous. Soc. Am. 35, 36–42 (1967).CrossRefGoogle Scholar
  102. 97.
    D. A. Berlincourt, D. R. Curran, and H. Jaffe, in Physical Acoustics (W. P. Mason, ed.) Vol. I, Academic Press Inc., New York (1964), Part A, pp. 169–270.Google Scholar
  103. 98.
    D. B. Fraser, J. T. Krause, and A. H. Meitzler, “Physical limitations on the performance of vitreous silica in high-frequency ultrasonic and acoustooptical devices,” AppL Phys. Letters 11, 308–310 (1967).CrossRefGoogle Scholar
  104. 99.
    J. T. Krause, unpublished data.Google Scholar
  105. 100.
    D. E. Chapin, “Frequency and temperature dependence of shear wave attenuation in Bausch and Lomb T-40 glass,” IEEE Trans. on Sonics and Ultrasonics SU-15, 178–181 (1968).CrossRefGoogle Scholar
  106. 101.
    D. B. Fraser, unpublished data.Google Scholar
  107. 102.
    W. P. Mason, Physical Acoustics and Properties of Solids, D. Van Nostrand Co., Inc. New York (1958), p. 17.Google Scholar
  108. 103.
    E. K. Sittig, unpublished data.Google Scholar
  109. 104.
    J. de Klerk, “Multilayer thin film piezoelectric transducers,” IEEE Trans. Sonics and Ultrasonics SU-13, 99–103 (1966).CrossRefGoogle Scholar
  110. 105.
    E. G. Spencer, R. T. Denton, T. B. Bateman, W. B. Snow, and L. G. Van Uitert, “Microwave elastic properties of nonmagnetic garnets,”J.Appl. Phys. 34, 3059–3060 (1963).CrossRefGoogle Scholar
  111. 106.
    D. A. Pinnow, L. G. Van Uitert, A. W. Warner, and W. A. Bonner, “Lead molybdate: a melt-grown crystal with a high figure of merit for acoustooptical device applications,” Appl. Phys. Letters 15, 83–86 (1969).CrossRefGoogle Scholar
  112. 107.
    A. H. Fitch, unpublished data.Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • A. H. Meitzler
    • 1
  1. 1.Bell Telephone LaboratoriesMurray HillUSA

Personalised recommendations