Piezoelectric Crystals and Ceramics

  • Don Berlincourt
Part of the Ultrasonic Technology book series (ULTE)


Piezoelectric crystals and ceramics are used as detectors and radiators of acoustic power from very low frequencies to above 109 Hz. The lower frequency range is now covered almost exclusively by the piezoelectric ceramics which date from the late 1940’s, and the upper frequency range is covered by new piezoelectric crystals discovered in the 1960’s. The very highest frequency range has been opened up by oriented deposited films of several of the new crystals.


Equivalent Circuit Piezoelectric Material Barium Titanate Coupling Factor Piezoelectric Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “IRE Standards on Piezoelectric Crystals, 1949,” Proc. IRE 37, 1378–1395 (1949).Google Scholar
  2. 2.
    “IRE Standards on Piezoelectric Crystals: Determination of the Elastic, Piezoelectric, and Dielectric Constants—The Electromechanical Coupling Factor, 1958,” Proc. IRE 46, 764–778 (1958).Google Scholar
  3. 3.
    “IRE Standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics, 1961,” Proc. IRE 49, 1161–1169 (1961).Google Scholar
  4. 4.
    W. G. Cady, Piezoelectricity, Vols. 1 and 2, Dover, New York, 1964 (Revision of McGraw-Hill, New York, 1946).Google Scholar
  5. 5.
    W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, Princeton, N. J. (1950).Google Scholar
  6. 6.
    W. P. Mason, Physical Acoustics and the Properties of Solids, Van Nostrand, Princeton, N. J. (1958).Google Scholar
  7. 7.
    D. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and Piezomagnetic Materials and their Function in Transducers,” in Physical Acoustics (W. P. Mason, ed.) Vol. 1A, pp. 169–270, Academic Press, New York (1964).Google Scholar
  8. 8.
    Landolt-Börnstein, “Numerical Data and Functional Relationships in Science and Technology,” (K. H. Hellwege, ed.) Group III, Vol. I, (R. Bechmann and R. F. S. Hearmon), Springer, Berlin (1966). See also Vol. II, Group III (1969).Google Scholar
  9. 9.
    H. Jaffe and D. Berlincourt, “Piezoelectric transducer materials,” Proc. IEEE 53, 1372–1386 (1965).CrossRefGoogle Scholar
  10. 10.
    “Piezoelectric technology data for designers,” distributed by Piezoelectric Div., Gould, Inc., Bedford, Ohio (1965).Google Scholar
  11. 11.
    “Piezoelectric ceramics,” distributed by Electronic Components and Materials Div., N. V. Philips, Eindhoven, Netherlands (1968).Google Scholar
  12. 12.
    J. F. Nye, Physical Properties of Crystals, The Clarendon Press, Oxford, England (1957).Google Scholar
  13. 13.
    D. Berlincourt, “Piezoelectric and ferroelectric energy conversion,” IEEE Trans. on Sonics and Ultrasonics SU-15, 87–97 (1968).Google Scholar
  14. 14.
    R. Bechmann, “Contour modes of square plates excited piezoelectrically and determination of electric and piezoelectric coefficients,” Proc. Phys. Soc. (London) 64B, 323–337 (1951).Google Scholar
  15. 15.
    R. Holland, “Contour extensional resonant properties of rectangular piezoelectric plates,” IEEE Trans. on Sonics and Ultrasonics SU-15, 97–105 (1968).CrossRefGoogle Scholar
  16. 16.
    R. Holland and E. P. Eer Nisse, Design of Resonant Piezoelectric Devices, M.I.T. Press, Cambridge, Mass. (1969).Google Scholar
  17. 17.
    W. P. Mason, Electromechanical Transducers and Wave Filters, Van Nostrand, New York (1948).Google Scholar
  18. 18.
    W. Shockley, D. R. Curran, and D. J. Koneval, “Trapped-energy modes in quartz filter crystals,”J.Acoust. Soc. Am. 41, 981–993 (1967).CrossRefGoogle Scholar
  19. 19.
    W. S. Mortley, “Frequency-modulated quartz oscillators for broadcasting equipment,” Proc. IEE 104B, 239–249 (1956).Google Scholar
  20. 20.
    R. A. Sykes and W. D. Beaver, “High frequency monolithic crystal filters with possible application to single frequency and single side band use,” Proc. 20th Annual Symposium on Frequency Control, Atlantic City, N. J. (1966), pp. 288–293.Google Scholar
  21. 21.
    M. Onoe and H. Jumonji, “Analysis of piezoelectric resonators vibrating in trapped-energy modes,” Electronics and Comm. Eng. (Japan) 48, 84–93 (1965).Google Scholar
  22. 22.
    H. F. Tiersten, “Thickness vibrations of piezoelectric plates,”J.Acoust. Soc. Am. 35, 53–58 (1963).CrossRefGoogle Scholar
  23. 23.
    M. Onoe, H. F. Tiersten, and A. H. Meitzler, “Shift in the location of resonant frequencies caused by large electromechanical coupling in thickness mode resonators,”J.Acoust. Soc. Am. 35, 36–42 (1963).CrossRefGoogle Scholar
  24. 24.
    D. Berlincourt and H. Jaffe, “Elastic and piezoelectric coefficients of single crystal barium titanate,” Phys. Rev. 111, 143–148 (1958).CrossRefGoogle Scholar
  25. 25.
    D. Berlincourt, H. H. A. Krueger, and B. Jaffe, “Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature, and composition,”J.Phys. Chem. Solids 25, 659–674 (1964).CrossRefGoogle Scholar
  26. 26.
    D. Berlincourt, “Transducers using forced transitions between ferroelectric and an-tiferroelectric states,” IEEE Trans. on Sonics and Ultrasonics SU-13, 116–125 (1966).CrossRefGoogle Scholar
  27. 27.
    G. E. Martin, U.S. Navy J. of Underwater Acoustics 15, 329–332 (1965).Google Scholar
  28. 28.
    G. E. Martin, “Vibrations of coaxially segmented longitudinally polarized ferroelectric tubes,”J.Acoust. Soc. Am. 36, 1496–1506 (1964).CrossRefGoogle Scholar
  29. 29.
    R. Holland, “Representation of dielectric, elastic, and piezoelectric losses by complex coefficients,” IEEE Trans. on Sonics and Ultrasonics SU-14, 18–20 (1967).CrossRefGoogle Scholar
  30. 30.
    W. P. Mason and R. A. Sykes, “Low-frequency quartz-crystal cuts having low temperature coefficients,” Proc. IRE 32, 208–215 (1944).CrossRefGoogle Scholar
  31. 31.
    R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Letters 5, 17–19 (1964).CrossRefGoogle Scholar
  32. 32.
    K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations, and etching,”J.Phys. Chem. Solids 27, 983–986 (1966).CrossRefGoogle Scholar
  33. 33.
    H. J. Levinstein, A. A. Ballman, and C. D. Capio, “Domain structure and Curie temperature of single crystal lithium tantalate,”J.Appl. Phys. 37, 4585–4586 (1966).CrossRefGoogle Scholar
  34. 34.
    J. E. Guesic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, “The nonlinear optical properties of Ba2NaNb5O15,” Appl. Phys. Letters 11, 269–271 (1967).CrossRefGoogle Scholar
  35. 35.
    N. F. Foster, “Ultrahigh frequency cadmium sulfide transducers,” IEEE Trans. on Sonics and Ultrasonics SU-11, 63–68 (1964).Google Scholar
  36. 36.
    J. de Klerk and E. F. Kelley, “Coherent phonon generation in the gigacycle range via insulating cadmium sulfide films,” Appl. Phys. Letters 5, 2–3 (1964).CrossRefGoogle Scholar
  37. 36a.
    T. R. Sliker and D. A. Roberts, “A thin film CdS-quartz composite resonator,”J.Appl. Phys. 38, 2350–2358 (1967).CrossRefGoogle Scholar
  38. 37.
    D. L. White, “Depletion layer transducer—A new high frequency ultrasonic transducer,” 1961 IRE Internaťl Conv. Rec. pt. 6, vol. 9 (1961), pp. 304–309.Google Scholar
  39. 38.
    N. F. Foster, “Diffusion layer ultrasonic transducer,”J.Appl. Phys. 34, 990–991 (1963).CrossRefGoogle Scholar
  40. 39.
    A. R. Hutson, J. H. McFee, and D. L. White, “Ultrasonic amplification in CdS,” Phys. Rev. Letters 7, 237–239 (1961).CrossRefGoogle Scholar
  41. 40.
    S. B. Austerman, D. Berlincourt, and H. H. A. Krueger, “Polar properties of BeO single crystals,”J.Appl. Phys. 34, 339–341 (1963).CrossRefGoogle Scholar
  42. 41.
    D. F. Crisler, J. J. Cupal, and A. R. Moore, “Dielectric, piezoelectric, and electromechanical coupling constants of zinc oxide crystals,” Proc. IEEE 56, 225–226 (1968).CrossRefGoogle Scholar
  43. 42.
    T. B. Bateman, “Elastic moduli of single-crystal zinc oxide,” J.Appl. Phys. 33, 3309–3312(1962).CrossRefGoogle Scholar
  44. 43.
    D. A. Berlincourt, H. Jaffe, and L. R. Shiozawa, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev. 129, 1009–1017 (1963).CrossRefGoogle Scholar
  45. 44.
    A. R. Hutson, “Piezoelectric devices utilizing aluminum nitride,” U.S. Patent 3,090, 876, May 21, 1963.Google Scholar
  46. 45.
    A. W. Warner, G. A. Coquin, A. H. Meitzler, and J. L. Fink, “Piezoelectric Properties of Ba2NaNb5O15,” Appl. Phys. Letters 14, 34–35 (1969).CrossRefGoogle Scholar
  47. 46.
    A. W. Warner, “New piezoelectric materials,” presented at the 19th Frequency Control Symp., sponsored by U.S. Army Electronics Command, Fort Monmouth, N. J., April, 1965.Google Scholar
  48. 47.
    M. Marezio, “The crystal structure of LiGaO2,” Acta Cryst. (Internat.) 18, 481–484 (1965).Google Scholar
  49. 48.
    E. J. Charlson and G. Mott, “Dynamic measurement of the piezoelectric and elastic constants of gallium arsenide,” Proc. IEEE 51, 1239 (1963).CrossRefGoogle Scholar
  50. 49.
    T. B. Bateman, H. J. McSkimin, and J. M. Whelan, “Elastic moduli of single-crystal gallium arsenide,” J. Appl. Phys. 30, 544–545 (1959).CrossRefGoogle Scholar
  51. 50.
    M. Onoe, A. W. Warner, and A. A. Ballman, “Elastic and piezoelectric characteristics of bismuth germanium oxide Bi12GeO20,” IEEE Trans. on Sonics and Ultrasonics SU-14, 165–167 (1967).CrossRefGoogle Scholar
  52. 51.
    P. Egli, “A survey of inorganic piezoelectric materials,” American Minerologist 33, 622–633 (1948).Google Scholar
  53. 52.
    A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystals in class (3m),”J.Acoust. Soc. Am. 42, 1223–1231 (1967).CrossRefGoogle Scholar
  54. 53.
    A. W. Warner and A. A. Ballman, “Low temperature coefficient of frequency in a lithium tantalate resonator,” Proc. IEEE 55, 450 (1967).CrossRefGoogle Scholar
  55. 54.
    T. R. Sliker and D. J. Koneval, “Frequency-temperature behavior of X-cut lithium tantalate resonators”, Proc. IEEE 56, 1402 (1968).CrossRefGoogle Scholar
  56. 55.
    E. Fatuzzo, G. Harbeke, W. J. Merz, R. Nitsche, H. Roelschi, and W. Ruppel, “Ferroelectricity in SbSI,” Phys. Rev. 127, 2036–2037 (1962).CrossRefGoogle Scholar
  57. 56.
    R. Nitsche, H. Roelschi, and P. Weld, “New ferroelectric V, VI, and VII compounds of the SbSI type,” Appl. Phys. Letters 4, 210–211 (1964).CrossRefGoogle Scholar
  58. 57.
    D. A. Berlincourt, H. Jaffe, W. J. Merz, and R. Nitsche, “Piezoelectric effect in the ferroelectric range in SbSI,” Appl. Phys. Letters 4, 61–63 (1964).CrossRefGoogle Scholar
  59. 58.
    G. Quentin and J. M. Thuillier, “Piezoelectric properties of tellurium by electromechanical resonance,” Solid State Commun. 2, 115–117 (1964) (in French).CrossRefGoogle Scholar
  60. 59.
    H. Gobrecht, H. Harnisch, and A. Tausend, “The piezoelectric effect in selenium,” Z. Phys. (Germany) 148, 209–217 (1957).Google Scholar
  61. 60.
    B. Jaffe, R. S. Roth, and S. Marzullo, “Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics,”J.Appl. Phys. 25, 809–810 (1954).CrossRefGoogle Scholar
  62. 61.
    D. A. Berlincourt, C. Cmolik, and H. Jaffe, “Piezoelectric properties of polycrystalline lead titanate zirconate compositions,” Proc. IRE 48, 220–229 (1960).CrossRefGoogle Scholar
  63. 62.
    D. Schofield and R. F. Brown, “An investigation of some barium titanate compositions for transducer applications,” Canad. J. Phys. 35, 594–607 (1957).CrossRefGoogle Scholar
  64. 63.
    C. S. Brown, R. C. Kell, R. Taylor, and L. A. Thomas, “Piezoelectric materials,” Proc. Instn Elect. Engrs (GB) 109B, 99–114 (1962).Google Scholar
  65. 64.
    R. E. Jaeger and L. Egerton, Hot pressing of potassium-sodium niobates,J.Am. Ceram. Soc. 45, 209–213 (1962).CrossRefGoogle Scholar
  66. 65.
    F. Kulcsar, “Electromechanical properties of lead titanate zirconate ceramics with lead partially replaced by calcium or strontium,”J.Am. Ceram. Soc. 42, 49–51 (1959).CrossRefGoogle Scholar
  67. 66.
    T. Ikeda, “Studies on (Ba, Pb)(Ti, Zr)O3 system,”J.Phys. Soc. Japan, 168–174 (1959).Google Scholar
  68. 67.
    B. Jaffe, R. S. Roth and S. Marzullo, “Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: tin oxide and lead titanate-lead hafnate,”J.Res. Nat. Bur. Stand. 55, 239–254 (1955).CrossRefGoogle Scholar
  69. 68.
    F. Kulcsar, “Electromechanical properties of lead titanate zirconate ceramics modified with certain three- or five-valent additions,”J.Am. Ceram. Soc. 42, 343–349 (1959).CrossRefGoogle Scholar
  70. 69.
    H. Jaffe, “Properties of ferroelectric ceramics in the lead titanate zirconate system,” Proc. Inst. Elect. Eng. (GB) 109B, Suppl. 22, 351–354 (1961).Google Scholar
  71. 70.
    R. Gerson and H. Jaffe, “Electrical conductivity in lead titanate zirconate ceramics,”J.Phys. Chem. Solids 24, 979–984 (1963).CrossRefGoogle Scholar
  72. 71.
    D. Berlincourt, “Behavior of piezoelectric ceramics under various environmental and operation conditions of radiating sonar transducers,” U.S. Navy J. of Underwater Acoust. 15, 266–283 (1965).Google Scholar
  73. 72.
    H. H. A. Krueger, “Stress sensitivity of piezoelectric ceramics: Pt. II. Heat treatment,”J.Acoust. Soc. Am. 43, 576–582 (1968).CrossRefGoogle Scholar
  74. 73.
    H. H. A. Krueger, Stress sensitivity of piezoelectric ceramics: Pt. I. Sensitivity to compressive stress parallel to the polar axis,J.Acoust. Soc. Am. 42, 636–645 (1967).CrossRefGoogle Scholar
  75. 74.
    D. Schofield and R. F. Brown, “An investigation of some barium titanate compositions for transducer applications,” Can. J. Phys. 35, 594–607 (1957).CrossRefGoogle Scholar
  76. 75.
    R. F. Brown, “Effect of two-dimensional mechanical stress on the dielectric properties of ceramic barium titanate and lead zirconate titanate,” Can. J. Phys. 39, 741–753 (1961).CrossRefGoogle Scholar
  77. 76.
    R. F. Brown and G. W. McMahon, “Material constants of ferroelectric ceramics at high pressure,” Can. J. Phys. 40, 672–674 (1962).CrossRefGoogle Scholar
  78. 77.
    R. Y. Nishi and R. F. Brown, “Behavior of piezoceramic projector materials under hydrostatic pressure,”J.Acoust. Soc. Am. 36, 1292–1296 (1964).CrossRefGoogle Scholar
  79. 78.
    R. Y. Nishi, “Effects of one-dimensional pressure on the properties of several transducer ceramics,”J.Acoust. Soc. Am. 40, 486–495 (1966).CrossRefGoogle Scholar
  80. 79.
    D. Berlincourt and H. H. A. Krueger, “Domain processes in lead titanate zirconate and barium titanate ceramics,”J.Appl. Phys. 30, 1804–1810 (1959).CrossRefGoogle Scholar
  81. 80.
    H. H. A. Krueger, “Stress sensitivity of piezoelectric ceramics: Pt. III. Sensitivity to compressive stress perpendicular to the polar axis,” J. Acoust. Soc. Am. 43, 583–591 (1968).CrossRefGoogle Scholar
  82. 81.
    A. W. Warner, J. G. Bergman Jr., D. A. Pinnow, and G. R. Crane, “Piezoelectric and photoelastic properties of lithium iodate,” J.Acoust. Soc. Am. 47, 791–794 (1970).CrossRefGoogle Scholar
  83. 82.
    S. Haussühl, “Piezoelectric and electric behavior of lithium iodate” (in German), Phys. Stat. Sol 29, K159–161 (1968).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • Don Berlincourt
    • 1
  1. 1.Vernitron Piezoelectric DivisionBedfordUSA

Personalised recommendations