Advertisement

Magnetostrictive Metals and Piezomagnetic Ceramics as Transducer Materials

  • Yoshimitsu Kikuchi
Part of the Ultrasonic Technology book series (ULTE)

Abstract

Magnetostrictive materials have been studied and developed during the last 40 years mainly for the generation and detection of ultrasonic waves. More recently some resonator applications have been introduced. We shall give a few examples of practical magnetostrictive transducers for both generators and detectors as well as electric wave filter applications.

Keywords

Pure Nickel Ultrasonic Transducer Force Factor Electromechanical Coupling Factor Magnetostrictive Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Balamuth, U.S. Patent No. 2, 580, 716 (Jan. 1, 1952); IRE Convention Record, Vol. 3, Part 9, “Ultrasonics II,” 89–97 (1955).Google Scholar
  2. 2.
    T. F. Hueter and R. H. Boit, Sonics, John Wiley & Sons, Inc., New York (1955), pp. 276–277.Google Scholar
  3. 3.
    J. B. Jones and J. J. Powers, “Ultrasonic Welding,” The Welding Journal, 761–766 (August, 1956).Google Scholar
  4. 4.
    J. B. Jones and F. R. Meyer, “Ultrasonic welding of structural aluminium alloys,” Supplement to the Welding Journal, 81s–92s (March, 1958).Google Scholar
  5. 5a.
    E. Mori, M. Inoue, and S. Toda, “The experiment of ultrasonic wire drawing,” (in Japanese), Reports of the 1965 Spring Meeting, The Acoustical Society of Japan, No. 2–1-20 (May, 1965).Google Scholar
  6. 5b.
    J. R. Frederick, Ultrasonic Engineering, John Wiley & Sons, Inc., New York (1965), pp. 169–170.Google Scholar
  7. 6.
    Y. Kikuchi and K. Fukushima, “The performance theory and the design procedure of the laminated magnetostriction vibrators,” (in English), Sci. Rept. Res. Inst., Tohoku Univ., B-1–2(1), 141–189 (1951).Google Scholar
  8. 7.
    Y. Kikuchi, in Ultrasonic Transducers (in English) (Y. Kikuchi, ed.), Corona Publishing Co. Ltd., Tokyo (1969), Chap. 5.Google Scholar
  9. 8.
    Y. Kikuchi and H. Shimizu, “Magnetostrictive ultrasonic transducers made of ferrites,” (in English),Sci. Rept. Res. Inst., Tohoku Univ. B-7(1), 9–15 (1955).Google Scholar
  10. 9.
    Y. Kikuchi, “Performance of magnetostrictive transducers made of aluminum-iron alloy or nickel-copper ferrite,” J. Acoust. Soc. Am. 29(5), 569–573 (1957).CrossRefGoogle Scholar
  11. 10.
    Y. Kikuchi, H. Shimizu, and D. Okuyama, “Fork-type magnetostriction vibrators made of ferrites,” (in Japanese), J. Inst. Elec. Commun. Eng. Japan, Paper prepared for the 1960 Joint Meeting in Sapporo, No. 1075, (July 1960).Google Scholar
  12. 11.
    H. H. Hall, “A magnetostriction filter,” Proc. IRE 21(9), 1328–1338 (1933).CrossRefGoogle Scholar
  13. 12.
    K. Fukushima and T. Koitibara, “Differential magnetostriction filter,” (in Japanese),J.Inst. Elec. Commun. Engr. (Japan), 194, 233–238 (1939).Google Scholar
  14. 13.
    A. P. Thiele, “Narrow-band magnetostrictive filters,” Electronics and Radio Engineer, 35(11), 402–411 (1958).Google Scholar
  15. 14.
    K. Shibayama, Y. Kikuchi and T. Sato, “A new ferrite magnetostrictive resonator of composed type for magnetostriction filters,” (in Japanese), Reports of the 1965 Spring Meeting, The Acoustical Society of Japan, No. 1–1-9 (May, 1965).Google Scholar
  16. 15.
    Y. Kikuchi, “Magnetostrictive materials and applications,” IEEE Transactions on Magnetics Mag-4(2), 107–117 (1968).CrossRefGoogle Scholar
  17. 16.
    K. Shibayama, in Ultrasonic Transducers (in English) (Y. Kikuchi, ed.), Corona Publishing Co. Ltd., Tokyo (1969), Chap. 11.Google Scholar
  18. 17.
    R. Boynton, “A magnetostrictive-filter random wave analyzer,” IRE International Convention Record, Vol. 8, Pt. 9 (1960), pp. 217–226.Google Scholar
  19. 18.
    A. B. Wood, “A Textbook of Sound,” G. Bell and Sons Ltd., London (1930), pp. 154–155.Google Scholar
  20. 19.
    H. Nukiyama and K. Aoyagi, Japanese Patent 109, 289 (1935).Google Scholar
  21. 20.
    A. B. Wood, F. D. Smith, and J. A. McGeachy, “A magnetostriction echo depth-recorder,”J. Inst. Elec. Engr. 76, 550–566 (1935).Google Scholar
  22. 21.
    Y. Kikuchi, in Ultrasonic Transducers (in English) (Y. Kikuchi, ed.), Corona Publishing Co. Ltd., Tokyo (1969), Chap. 1.Google Scholar
  23. 22.
    Y. Kikuchi, in Ultrasonic Transducers (in English) (Y. Kikuchi, ed.), Corona Publishing Co. Ltd., Tokyo (1969), Chap. 3.Google Scholar
  24. 23.
    Y. Kikuchi, “On the magnetostrictivity” (in English), Nippon Elec. Commun. Eng., No. 30 (October, 1942).Google Scholar
  25. 24.
    F. D. Smith, “The magnetostriction constant for alternating magnetic field,” Proc. Phys. Soc. (London) 42, 181–191 (1930).CrossRefGoogle Scholar
  26. 25.
    S. Butterworth and F. D. Smith, “The equivalent circuit of the magnetostriction oscillator,” Proc. Phys. Soc. (London) 43, 166–185 (1931).CrossRefGoogle Scholar
  27. 26.
    H. Sussman and S. L. Ehrlich, “Evaluation of the magnetostrictive properties of Hiperco,”J.Acoust. Soc. Am. 22, 499–506 (1950).CrossRefGoogle Scholar
  28. 27.
    C. M. van der Burgt, “Performance of ceramic ferrite resonators as transducers and filter elements,”J.Acoust. Soc. Am., 28, 1020–1032 (1956).CrossRefGoogle Scholar
  29. 28.
    F. V. Hunt, Electroacoustics, John Wiley & Sons, Inc., New York (1954), p. 129.Google Scholar
  30. 29.
    Y. Kikuchi and H. Shimizu, “On the effective attenuation of some electroacoustic transducers at their conjugate electrical matching,” (in English),Sci. Rept. Res. Inst., Tohoku Univ., B-3(1), 13–18 (1951).Google Scholar
  31. 30.
    Y. Kikuchi and H. Shimizu, “On the effective attenuation of ring-type magnetostriction transducer,” (in English),Sci. Rept. Res. Inst., Tohoku Univ. B-3(1), 1–5 (1951).Google Scholar
  32. 31.
    Y. Kikuchi and H. Shimizu, “On the B-type resonance of magnetostriction and electrostriction transducers,” (in English),Sci. Rept. Res. Inst., Tohoku Univ. B-4(1), 173–203 (1952).Google Scholar
  33. 32.
    Y. Kikuchi, Magnetostriction Vibration and its Application to Ultrasonics, (in Japanese), Corona Publishing Co. Ltd., Tokyo, 5th Edition (1966).Google Scholar
  34. 33.
    R. M. Bozorth, Ferromagnetism, Van Nostrand Co., New York (1951), p. 691.Google Scholar
  35. 34.
    Y. Kikuchi and H. Shimizu, “On the relation between ΔE-effect and electromechanical coupling factor in magnetostrictive materials,” (in Japanese), J.Inst. Elec. Commun. Engr. Japan, No. 717 (April, 1959). Paper prepared for the 1959 Joint Meeting.Google Scholar
  36. 35.
    Y. Kikuchi, in Ultrasonic Transducers, (in English) (Y. Kikuchi, ed.), Corona Publishing Co. Ltd., Tokyo (1969), Chap. 3.Google Scholar
  37. 36.
    R. M. Bozorth, Ferromagnetism, Van Nostrand Co., New York (1951), p. 545.Google Scholar
  38. 37.
    Henry B. Karplus, “Effect of hydrostatic pressure on magnetostrictors,”J. Acoust. Soc. Am. 35, 800 (1963).CrossRefGoogle Scholar
  39. 38.
    Y. Kikuchi, H. Shimizu, and T. Uekusa, “Force factor of magnetostriction vibrators under hydrostatic pressure of 70 atm,” (in Japanese), Reports of the 1964 Spring Meeting, The Acoustical Soc. of Japan, No. 1–1-8 (May, 1964).Google Scholar
  40. 39.
    Y. Kikuchi, H. Shimizu, and T. Uekusa, “Force factor of magnetostriction vibrators under hydrostatic pressure of 70 atm,” (in Japanese), Record Elec. Commun. Eng. Conversazione, Tohoku Univ., Vol. 34, No. 1 (1965), p. 46.Google Scholar
  41. 40.
    R. M. Bozorth, Ferromagnetism, Van Nostrand Co., New York (1951), p.634.Google Scholar
  42. 41.
    Y. Kikuchi and H. Shimizu, “Formulated expression of magnetostriction characteristics under mechanical stress and the consideration on magnetostrictive vibration of large amplitude,” (in Japanese), Record of Ultrasonic Professional Group, The Institution of Electric and Communication Engineers of Japan (Denki-Tsushin-Gakkai, Shiba, Minato-ward, Tokyo), (May, 1961).Google Scholar
  43. 42.
    Y. Kikuchi, Ultrasonic Transducers, (in English) (Y. Kikuchi, ed.), Corona Publishing Co. Ltd., Tokyo (1969), Chap. 4, p. 104.Google Scholar
  44. 43.
    Y. Kikuchi, Magnetostriction Vibration and its Application to Ultrasonics, (in Japanese), Corona Publishing Co. Ltd., Tokyo, 5th Edition (1966), p. 80.Google Scholar
  45. 44.
    C. M. Davis and S. F. Ferebee, “Dynamic magnetostrictive properties of Alfenol,” J. Acoust. Soc. Am. 28(2), 286–290 (1956).CrossRefGoogle Scholar
  46. 45.
    Y. Kikuchi, Ultrasonic Transducers, (in English) (Y. Kikuchi, ed.), Corona Publishing Co. Ltd., Tokyo (1969), Chap. 4.Google Scholar
  47. 46.
    Y. Kikuchi and K. Fukushima,J.Inst. Telegraph and Telephone Engr. Japan, 382 (1942).Google Scholar
  48. 47.
    K. Fukushima and A. Kurobe, “Improvement of magnetostrictivity measurement by means of mutual motional impedance method,” (Tentative translation from the Japanese title), Record Elec. Commun. Eng. Conversazione, Tohoku Univ. (1948).Google Scholar
  49. 48.
    Y. Kikuchi, H. Shimizu, and Y. Sanpei, “Improvement of magnetostrictivity meter,” (in Japanese), Paper prepared for Acoustics Conversazione, Research Institute of Electrical Communication, Tohoku University, (September 17, 1954); and or Paper prepared for the Meeting of Acoustical Society of Japan (May, 1956).Google Scholar
  50. 49.
    Y. Kikuchi, H. Shimizu, and M. Terashima, “A new method for precise measurement of quadrantal frequency difference by applying carrier-suppressed modulation,” (in English),Sci. Rept. Res. Inst., Tohoku Univ. B-7(1), 17–21 (1955).Google Scholar
  51. 50.
    Y. Kikuchi, H. Shimizu, and T. Uekusa, “Sound reflection coefficient of wedgetype absorbers made of pine under high hydrostatic pressure,” Record Elec. Commun. Eng. Conversazione, Tohoku Univ. 34(1), 48 (1965).Google Scholar
  52. 51.
    T. Uekusa, “On the radiation of intense ultrasonic waves under large hydrostatic pressure,” (Tentative translation of the title of the original Japanese text), Doctoral Thesis, Tohoku University, Sendai, Japan (1966).Google Scholar
  53. 52.
    R. R. Whymark and James M. Witting, “Resonant displacement of nickel and permendur magnetostrictors under static compressive stress,”J. Acousi. Soc. Am. 33, 1720 (1961).CrossRefGoogle Scholar
  54. 53.
    W. Döring, Über die Temperaturabhängigkeit der Magnetostriktion von Nickel, Z. Physik 103, 560–582 (1936).CrossRefGoogle Scholar
  55. 54.
    H. Kirchner, Über den Einfluss von Zug, Druck, und Torsion auf die Längsmag-netostriktion, Ann. Physik 27, 49–69 (1936).CrossRefGoogle Scholar
  56. 55.
    Y. Kikuchi and K. Fukushima, “On the magnetostriction activity in highly reduced plates of nickel,” (in Japanese),J. Inst. Elec. Engrs. Japan 62(647), 325 (1942).Google Scholar
  57. 56.
    Y. Kikuchi, “Empirical formula for magnetostriction phenomena in nickel,” (in English), Sci. Rept. Res. Inst., Tohoku Univ. B-4(2), 255–258 (1953). (The original Japanese publication was in 1942.)Google Scholar
  58. 57.
    E. R. W. Jones, C. A. Clark, and E. A. Fell, “Calculated and observed effects of texture on the magnetic properties and Young’s modulus of nickel sheet,” Brit. J. Appl. Phys. 9(5), 178–184 (1958).CrossRefGoogle Scholar
  59. 58.
    Y. Mashiyama, “On the hysteresis of magnetostriction of iron, nickel, cobalt, and single crystals of iron,” (in English),Sci. Rept. Tohoku Univ. 26, 1–39 (1937).Google Scholar
  60. 59.
    Y. Kikuchi, see Ref. (23).Google Scholar
  61. 60.
    Y. Kikuchi and H. Shimizu, see Ref. (41).Google Scholar
  62. 61.
    Y. Kikuchi and H. Shimizu, “Effect of oxide-forming heat treatment on the magnetic and magnetostrictive characteristics of nickel,” (in Japanese), Record of 1954 Joint Meeting of Three Institutes of Electrical Engineers of Japan in Tokyo, No. 204 (October, 1954).Google Scholar
  63. 62.
    A. Shulze, “Die Magnetostriktion. I,” Z. Physik 50, 448–505 (1928).CrossRefGoogle Scholar
  64. 63.
    Y. Nishina, K. Fukushima, and H. Inoue, “On the magnetostriction vibration of iron-nickel alloy,” (Tentative translation from the Japanese title), J.Inst. Elec. Commun. Engr. Japan, 24–25 (October, 1937).Google Scholar
  65. 64.
    C. M. Davis Jr., H. H. Helms, and S. F. Ferebee, “Dynamic magnetostrictive properties of Ni-Fe alloys,”J. Acoust. Soc. Am. 29(4), 431–434 (1957).CrossRefGoogle Scholar
  66. 65.
    K. Honda, H. Masumoto, Y. Shirakawa and T. Kobayashi, “On the magnetostriction of iron-aluminum alloys and a new alloy ‘Alfer’,” Oral presentation in 1941 at the Sendai Meeting of the Japan Institute of Metals;Sci. Rept. Res. Inst., Tohoku Univ. A-1(4), 341–347 (1949).Google Scholar
  67. 66.
    H. Masumoto and G. Otomo, “On the dynamical characteristics of the magnetostriction alloy Alfer,” (in English),Sci. Rept. Res. Inst. Tohoku Univ., A-2(3), 413–419 (1950).Google Scholar
  68. 67.
    J. F. Nachman and W. J. Buehler, 16% aluminum-iron alloy cold rolled in the order-disorder temperature range,J. Appl. Phys. 25(3), 307–313 (1954).CrossRefGoogle Scholar
  69. 68.
    C. M. Davis and S. F. Ferebee, “Dynamic magnetostrictive properties of Alfenol,”J. Acoust. Soc. Am. 28(2), 286–290 (1956).CrossRefGoogle Scholar
  70. 69.
    M. T. Pigott and P. M. Kendig, “Iron-aluminum alloys for use in magnetostrictive transducers,”J. Acoust. Soc. Am. 28(3), 343–346 (1956).CrossRefGoogle Scholar
  71. 70.
    O. Henkel, Eisen-Aluminium-Legierungen für magnetostriktive Wandler, Hochfrequenztechnik und Elektroakustik 71(5), 161–166 (1962).Google Scholar
  72. 71.
    Z. N. Bulycheva, E. I. Gurvich, and Ya. P. Selisskii, “Magnetic alloys used in ultrasonics,” Soviet Progress in Applied Ultrasonics, Vol. 1 (1964), pp. 190–196.Google Scholar
  73. 72.
    O. N. Al’tgauzen, L. S. Bezuglaya, Z. N. Bulycheva, and O. V. Lyubetskaya, “Magnetic properties of alloys for magnetostrictive transducers,” Soviet Phys.-Acoust. 12(3), 249–253 (1967).Google Scholar
  74. 73.
    Z. N. Bulycheva, M. M. Borodkina, and V. L. Sandomirskaya, “Texture and magnetic properties of Fe-Al magnetostriction alloys,” The Physics of Metals and Metallography 19(1), 147–150 (1965).Google Scholar
  75. 74.
    R. C. Hall, “Magnetostriction of aluminum-iron single crystals in the region of 6 to 30 atom% aluminum,”J. Appl. Phys. 28(6), 707–713 (1957).CrossRefGoogle Scholar
  76. 75.
    H. Gengnagel, “Das magnetische Verhalten von Einkristallen aus Fe-Al-Legierungen im Überstrukturgebiet Fe3Al. II. Magnetostriktion und spez. Widerstand,” Naturwiss. 45(4), 81–82 (1958).CrossRefGoogle Scholar
  77. 76.
    K. Fukushima, H. Nukiyama, and Y. Nishina, private communication.Google Scholar
  78. 77.
    Y. Kikuchi and M. Nishikawa, “Magnetostrictive characteristics of magnetically anisotropic silicon steel sheet,” (in Japanese),J. Inst. Elec. Engr. (Japan) 63(659), 458 (1943).Google Scholar
  79. 78.
    C. A. Clark, “The dynamic magnetostriction of nickel-cobalt alloys”, Brit. J. Appl. Phys. 7(10), 355–360 (1956).CrossRefGoogle Scholar
  80. 79.
    W. T. Harris, K. H. Farr, C. A. Clark, and E. M. Wise, “Magnetostrictive properties of certain cobalt-nickel alloys”,J. Acoust. Soc. Am. 31, 854 (1959).CrossRefGoogle Scholar
  81. 80.
    C. A. Clark, “Improved nickel-base alloys for magnetostrictive transducers,” J. Acoust. Soc. Am. 33, 930–933 (1961).CrossRefGoogle Scholar
  82. 81.
    C. A. Clark and J. J. Mason, “Temperature dependence of dynamic magnetostrictive properties in nickel-cobalt-chromium alloys”,J. Acoust. Soc. Am. 35, 1665 (1963).CrossRefGoogle Scholar
  83. 82.
    Z. N. Bulycheva, E. I. Gurvich, and Ya. P. Selisskii, “Magnetic alloys used in ultrasonics,” Soviet Progress in Applied Ultrasonics, 1, 190–196 (1964).Google Scholar
  84. 83.
    H. E. Strauss, “Magnetostriction of low-density cobalt rondel,”J. Appl. Phys. 29(12), 1690–1691 (1958).CrossRefGoogle Scholar
  85. 84.
    T. Takei and H. Nakamura, “On the magnetostriction of metal-oxide magnetic substances,” (Tentative translation of the title of the original Japanese text), Paper prepared for the 22nd Joint Meeting of the Institute of Electrical Engineers (Japan), No. 36 (April, 1943), p. 45.Google Scholar
  86. 85.
    C. M. van der Burgt, “Dynamical physical parameters of the magnetostrictive excitation of extensional and torsional vibrations in ferrites,” Philips Research Reports 8, 91–132 (1953).Google Scholar
  87. 86.
    H. Thiede, “Untersuchungen an Ferriten auf ihre Eignung als Flüssigkeitsschallwandler”, Acustica 4, 532–536 (1954).Google Scholar
  88. 87.
    Y. Kikuchi, N. Tsuya, H. Shimizu, M. Terajima, A. Sugiyama, T. Hirone, S. Maeda, and J. Shimoiizaka,“ Study on ferrite for the use in magnetostriction vibrator, Part I, Ni-Zn ferrite,” (in English),Sci. Rept. Res. Inst. Tohoku Univ. B-7(1), 1–7 (1955).Google Scholar
  89. 88.
    Y. Kikuchi, N. Tsuya, H. Shimizu, M. Terajima, A. Sugiyama, T. Hirone, S. Maeda, and J. Shimoiizaka, “Study on ferrite for the use in magnetostriction vibrator, Part II, Ni-Cu ferrite,” (in English), Sci. Rept. Res. Inst., Tohoku Univ. B-7(3), 171–178(1955).Google Scholar
  90. 89.
    Y. Kikuchi, K. Fukushima, N. Tsuya, H. Shimizu, T. Hirone, S. Maeda, J. Shimoiizaka, and E. Fujino, “Dynamic magnetostriction characteristics of Ni-Cu-Co ferrites,” (in Japanese), Paper prepared for 1957 National Meeting of the Institute of Electronics and Communication Engineers of Japan, No. 39 (November, 1957).Google Scholar
  91. 90.
    H. Shimizu and T. Chiba, “Dynamic magnetostriction characteristics of Ni-Cu-Co-Zn ferrites,” (Tentative translation of the original Japanese print), Paper prepared for Acoustics Conversazione, Research Institute of Electrical Communication, Tohoku University (March, 1960).Google Scholar
  92. 91.
    C. M. van der Burgt, Ferrox-cube material for piezomagnetic vibrators, Philips Tech. Rev. 18(10), 285–298 (1956/57).Google Scholar
  93. 92.
    Private communication from Tohoku Metal Industries Ltd., Sendai, Japan.Google Scholar
  94. 93.
    S. F. Ferebee and C. M. Davis Jr., “Effect of divalent ion substitutions on the magne-tomechanical properties of nickel ferrite,”J. Acoust. Soc. Am. 30(8), 747–750 (1958).CrossRefGoogle Scholar
  95. 94.
    A. D. Sokolov and Ya S. Shur, “Connection between the magnetic properties and sensitivity of magnetostrictive nickel-zinc ferrite pickups,” Soviet Phys.-Acoust. 6(1), 130–132 (1960).Google Scholar
  96. 95.
    I. P. Golyamina, “Magnetostrictive ferrites as a material for electroacoustic transducers,” Soviet Phys.-Acoust. 6(3), 311–320 (1960).Google Scholar
  97. 96.
    G. Sherwood Smith and Oskar Mattiat, “Controlled temperature dependence of magnetostrictive ferrites,”J.Acoust. Soc. Am. 32, 1499 (1960).CrossRefGoogle Scholar
  98. 97.
    C. M. van der Burgt and A. L. Stuijts, “Low porosity ferrites for high-intensity ultrasonic radiators,” The 4th International Congress on Acoustics K22, Copenhagen (August, 1962).Google Scholar
  99. 98.
    Z. Koczkowski, “Hysteresis of the magnetomechanical parameters of type E1 magnetostrictive ferrite,” Soviet Phys.-Acoust. 9(1), 29–36 (1963).Google Scholar
  100. 99.
    I. P. Golyamina, “Application of ferrite as ultrasonic transmitters”, Soviet Progressin Applied Ultrasonics 1, 183–189 (1964).Google Scholar
  101. 100.
    L. I. Ganeva and I. P. Golyamina, “Properties of magnetostrictive ferrites at high temperatures,” Soviet Phys.-Acoust. 9(4), 337–340 (1964).Google Scholar
  102. 101.
    Y. Kikuchi and T. Matsuno, “Properties of ferrite magnetostrictive vibrators at high temperatures,” (in Japanese), Reports of the 1965 Spring Meeting, The Acoustical Society of Japan, No. 1–1-7 (May, 1965).Google Scholar
  103. 102.
    Y. Kikuchi, H. Shimizu and D. Okuyama, “Method for measuring acoustic radiation resistance of a transducer generating intense ultrasonic cavitation,” (in English),Sci. Rept. Res. Inst., Tohoku Univ. B-17 (3–4), 51–63 (1965).Google Scholar
  104. 102a.
    Y. Kikuchi, H. Shimizu and D. Okuyama, “Original Japanese publication; Measurement of acoustic-radiation-resistance variation due to cavitation”, Record Elec. Commun. Eng. Conversazione, Tohoku Univ. 27(2), 33–34 (1958).Google Scholar
  105. 103.
    Y. Kikuchi, H. Shimizu, T. Sannomiya, and T. Uekusa, “The effect of bias magnetic field on the large amplitude characteristics of ferrite magnetostriction vibrator,” (in Japanese), Reports of the 1966 Autumn Meeting, The Acoustical Society of Japan, No. 1–1-11 (November, 1966).Google Scholar
  106. 104.
    I. P. Golyamina and V. K. Chulkova, “Properties of magnetostrictive ferrites at large amplitudes of magnetic induction and mechanical stress,” Soviet Phys.-Acoust. 10(3), 236–241 (1965).Google Scholar
  107. 105.
    Y. Kikuchi, “On the synthesis of the theoretical characteristics of magnetostriction in polycrystal metals,” (in English),Sci. Rept. Res. Inst., Tohoku Univ. B-4(2), 259–286 (1953).Google Scholar
  108. 105a.
    Y. Kikuchi, Original Japanese publication:J. Inst. Elec. Engrs. (Japan) 63 (660), 471–473 (1943).Google Scholar
  109. 106.
    W. Heisenberg, “Zur Theorie der Magnetostriktion und der Magnetisierungskurve,” Z. Physik. 69, 287–297 (1931).CrossRefGoogle Scholar
  110. 107.
    R. Gans and J. von Harlem, “Magnetostriktion ferromagnetischer Kristalle,” Ann. Physik. 16, 162–173 (1933).CrossRefGoogle Scholar
  111. 108.
    K. Honda and Y. Mashiyama, “On the magnetostriction of single crystals of iron,” (in English),Sci. Rept. Tohoku Univ. 15, 755–776 (1926).Google Scholar
  112. 109.
    W. L. Webster, “Magnetostriction in iron crystals,” Proc. Roy. Soc. (London), (A)109, 570–584 (1925).CrossRefGoogle Scholar
  113. 110.
    H. B. Callen and N. Goldberg, “Magnetostriction of polycrystalline aggregates,”J. Appl. Phys. 36(3–2), 976–977 (1965).CrossRefGoogle Scholar
  114. 111.
    R. Kimura and K. Ohno, “On the elastic constants of single crystals of iron,” Sci. Rept. Tohoku Univ. 23, 359–364 (1934).Google Scholar
  115. 112.
    K. Honda and Y. Shirakawa, “On Young’s modulus of elasticity of single crystal of nickel,”J.Japan Inst. Metals 1, 217–219 (1937).CrossRefGoogle Scholar
  116. 113.
    M. Yamamoto, “On the ΔE-efîect of iron, nickel, and cobalt,”J.Japan Inst. Metals 5, 167–174 (1941).CrossRefGoogle Scholar
  117. 114.
    E. J. Langham, “Magnetostriction of polycrystalline silicon-iron sheet,” Brit. J. Appl. Phys. 14, 16–19 (1963).CrossRefGoogle Scholar
  118. 115.
    Y. Kikuchi, “Theoretical investigation on the ultimate mechanical output power available from magnetostriction vibrators,” (in Japanese), J. Inst. Elec. Commun. Engr. Japan 29, 197–208 (1946).Google Scholar
  119. 116.
    Y. Kikuchi and H. Shimizu, “Theoretical investigation on the ultimate mechanical output power by magnetostriction vibration,” (in Japanese), Record of Annual Meeting, The Acoustical Society of Japan, No. 1–3-17 (May, 1957).Google Scholar
  120. 117.
    Y. Kikuchi, “The theoretical limit of mechanical output power available from magnetostriction vibrators,” IEEE Transactions on Sonics and Ultrasonics SU-15, 1–13 (1968).Google Scholar
  121. 118.
    Y. Kikuchi and H. Shimizu, “On the variation of acoustic radiation resistance in water under ultrasonic cavitation,”J.Acoust. Soc. Am. 31(10), 1385–1386 (1959).CrossRefGoogle Scholar
  122. 119.
    Y. Kikuchi, H. Shimizu, and D. Okuyama, in Ultrasonic Energy (E. Kelly, ed.) University of Illinois Press, Urbana (1965), pp. 23–50.Google Scholar
  123. 120.
    Y. Kikuchi, H. Shimizu, and D. Okuyama, “Some aspects of ultrasonic cavitation”Sci. Rept. Res. Inst., Tohoku Univ. B-17(3–4), 65–85 (1965).Google Scholar
  124. 121.
    K. Tsukamoto, “On fatigue phenomena in the magnetostriction characteristics of nickel after intense vibration,” (in Japanese), Graduate Thesis, Faculty of Engineering, Tohoku University (March 15, 1950).Google Scholar
  125. 122.
    Y. Kikuchi and H. Shimizu, “On the magnetic hysteresis losses in magnetostriction vibration,” (in English),Sci. Rept. Res. Inst., Tohoku Univ. B-1–2(3), 365–379 (1951).Google Scholar
  126. 123.
    R. R. Whymark, “Intense sound output of a nickel magnetostrictive transducer,” J. Acoust. Soc. Am. 31, 1570 (1959).CrossRefGoogle Scholar
  127. 124.
    R. R. Whymark, “Utilization of magnetostrictive materials in generating intense sound,”J.Acoust. Soc. Am. 33, 725 (1961).CrossRefGoogle Scholar
  128. 125.
    C. M. van der Burgt, “Piezomagnetic Ferrites,” Electronic Technology, 330–341, September (1960).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • Yoshimitsu Kikuchi
    • 1
  1. 1.Research Institute of Electrical CommunicationTohoku UniversitySendaiJapan

Personalised recommendations