Assembly of Mouse Hepatitis Virus Strain JHM

  • Andrew Massalski
  • Marion Coulter-Mackie
  • Samuel Dales
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 142)


Coronaviruses have been characterized as a separate group (26), predominantly based on the morphology of their unique, massive peplomers and single stranded +RNA genome (22). Electron microscopic studies on different members of this group revealed that assembly occurs in the cytoplasm, where progeny are formed by a budding process from membranes of either the endoplasmic reticulum and/or cytoplasmic vacuoles (9). The budding process has been described in some detail in the case of avian infectious bronchitis virus, the human agent, 229E (2), and other isolates (3, 7, 10, 16, 18, 23, 24, 25, 29, 30). Despite the preponderance of data favouring budding as the assembly mechanism some reservations have been made about the significance of this process (11, 27). The present electron microscopic study was undertaken to ascertain at high resolution the nature of coronavirus assembly, with particular attention to the incompletely characterized nucleocapsid.


Influenza Virus Infectious Bronchitis Virus Cytoplasmic Vacuole Internal Component Chicken Embryo Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Apostolov, T.H. Flewett, and A.P. Kendal, Morphology of Influenza A,B,C and Infectious Bronchitis Virus (IBV) Virions and their Replication, in: “The Biology of large RNA viruses”, R.D. Barry and B.W.J. Mahy, ed., Academic Press, London-New York (1970).Google Scholar
  2. 2.
    W.B. Becker, K. McIntosh, J.H. Dees, and R.M. Chanock, Morphogenesis of avian infectious bronchitis virus and a related human virus (strain 229E), J. Virol. 1: 1019 (1967).PubMedGoogle Scholar
  3. 3.
    D. Chasey, and D.J. Alexander, Morphogenesis of avian infectious bronchitis virus in primary chick kidney cells, Arch. Virol. 52: 101 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    P.W. Choppin, and W. Stoeckenius, The morphology of SV5 virus, Virol. 23: 195 (1964).CrossRefGoogle Scholar
  5. 5.
    R.W. Compans, J. Content, and P.H. Duesberg, Structure of the ribonucleoprotein of influenza virus, J. Virol. 10: 795 (1972).PubMedGoogle Scholar
  6. 6.
    R.W. Compans, K.V. Holmes, S. Dales, and P.W. Choppin, An electron microscopic study of moderate and virulent viruscell interactions of the Parainfluenza Virus SV5, Virol. 30: 411 (1966).CrossRefGoogle Scholar
  7. 7.
    C.H. Cunningham, M.P. Spring, and K. Nazerian, Replication of avian infectious bronchitis virus in African green monkey kidney cell line VERO, J. gen. Virol. 16: 432 (1972).CrossRefGoogle Scholar
  8. 8.
    S. Dales, and H. Hanafusa, Penetration and intracellular release of the genomes of Avian RNA tumor viruses, Virol. 50: 440 (1972).CrossRefGoogle Scholar
  9. 9.
    J.F. David-Ferreira, and R.A. Manaker, An electron microscope study of the development of a mouse hepatitis virus in tissue culture cells, J. Cell Biol. 24: 57 (1965).PubMedCrossRefGoogle Scholar
  10. 10.
    H.J.A. Fleury, R.D. Sheppard, M.B. Bornstein, and C.S. Raine, Further ultrastructural observations of virus morphogenesis and myelin pathology in JHM virus encephalomyelitis. Neuropath. App. Neurobiol. 6: 165 (1980).CrossRefGoogle Scholar
  11. 11.
    D. Hamre, D.A. Kindig, and J. Mann, Growth and intracellular development of a new respiratory virus, J. Virol. 1: 810 (1967).PubMedGoogle Scholar
  12. 12.
    R.W. Home, A.P. Waterson, P. Wildy, and A.E. Farnham, The structure and composition of the Myxoviruses. 1. Electron microscope studies of the structure of Myxovirus particles by negative staining techniques, Virol. 11: 79 (1960).CrossRefGoogle Scholar
  13. 13.
    D.A. Kennedy, and C.M. Johnson-Lussenberg, Isolation and morphology of the internal component of human coronavirus, strain 229E, Intervirol. 6: 197 (1976).CrossRefGoogle Scholar
  14. 14.
    A. Lucas, W. Flintoff, R. Anderson, D. Percy, M. Coulter, and S. Dales, In vivo and in vitro models of demyelinating diseases: I. Tropism of the JHM strain of murine hepatitis virus for cells of glial origin, Cell 12: 553 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    M.R. Macnaughton, H.A. Davies, and M.V. Nermut, Ribonucleoprotein like structures from coronavirus particles, J. Gen. Virol. 39: 545 (1978).CrossRefGoogle Scholar
  16. 16.
    K. Nazerian, and C.H. Cunningham, Morphogenesis of avian infectious bronchitis virus in chicken embryo fibroblasts, J. gen. Virol. 3: 469 (1968).PubMedCrossRefGoogle Scholar
  17. 17.
    E.C.J. Norrby, and P. Magnusson, Some morphological characteristics of the internal component of Measles virus, Arch. ges. Virusforsch 17: 443 (1964).CrossRefGoogle Scholar
  18. 18.
    L.S. Oshiro, J.H. Schieble, and E.H. Lennette, Electron microscopic studies of coronavirus, J. gen. Virol. 12: 161 (1971).PubMedCrossRefGoogle Scholar
  19. 19.
    D.H. Pocock, and D.J. Garwes, The polypeptides of hemagglutinating encephalomyelitis virus and isolated subviral particles, J. gen. Virol. 37: 487 (1977).CrossRefGoogle Scholar
  20. 20.
    M.W. Pons, I.T. Schulze, and G.K. Hirst, Isolation and characterization of the ribonucleoprotein of influenza virus, Virol. 39: 250 (1969).CrossRefGoogle Scholar
  21. 21.
    E.S. Reynolds, The use of lead citrate at high pH as an electron-opaque strain in electron microscopy, J. Cell Biol. 17: 208 (1963).PubMedCrossRefGoogle Scholar
  22. 22.
    J.A. Robb, and C.W. Bond, Coronaviridae, in: “Comprehensive Virology”, H. Fraenkel-Conrat and R. Wagner, ed., Plenum, New York (1979).Google Scholar
  23. 23.
    J.A. Robb, and C.W. Bond, Pathogenic murine coronaviruses. 1. Characterization of biological behavior in vitro and virus specific intracellular RNA of strongly neurotropic JHMV and weakly neurotropic A59V viruses, Virol. 94: 352 (1979).CrossRefGoogle Scholar
  24. 24.
    J.A. Robb, C.W. Bond, and J.L. Leibowitz, Pathogenic murine coronaviruses. 111. Biological and biochemical characterization of temperature-sensitive mutants of JHMV, Virol. 94: 385 (1979).CrossRefGoogle Scholar
  25. 25.
    B.H. Ruebner, T. Hirano, and R.J. Slusser, Electron microscopy of the hepatocellular and Kupffer cell lesions of mouse hepatitis with particular reference to the effect of cortisone, Amer. J. Path. 51: 163 (1967).PubMedGoogle Scholar
  26. 26.
    D.A.J. Tyrrell, J.D. Almeida, C.H. Cunningham, W.R. Dowdle, M.S. Hoestad, K. McIntosh, M. Tajima, Y.L. Zakstelskaya, B.C. Easterday, A. Kapikian, and R.W. Bingham, Coronaviridae, Intervirol. 5: 76 (1975).Google Scholar
  27. 27.
    P.K. Uppal, and H.P. Chu, An electron microscope study of the trachea of the fowl infected with avian infectious bronchitis virus, J. med. Microbiol. 3: 643 (1970).PubMedCrossRefGoogle Scholar
  28. 28.
    R.R. Wagner, Reproduction of Rhabdoviruses, in: “Comprehensive Virology”, H. Fraenkel-Conrat and R. Wagner, eds., Plenum, New York (1975).Google Scholar
  29. 29.
    K. Watanabe, Electron microscopic studies of experimental viral hepatitis in mice. 1. Virus particles and their relationship to hepatocytes and Kupffer cells, J. Electron Micro. 18: 158 (1969).Google Scholar
  30. 30.
    K.H. Witte, M. Tajima, and B.C. Easterday, Morphologic characteristics and nucleic acid type of transmissible gastroenteritis virus of pigs, Arch. ges. Virusforsch. 23: 53 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Andrew Massalski
    • 1
  • Marion Coulter-Mackie
    • 1
  • Samuel Dales
    • 1
  1. 1.Cytobiology Group, Department of Microbiology and ImmunologyUniversity of Western OntarioLondonCanada

Personalised recommendations