The RNA and Proteins of Human Coronaviruses

  • John C. Hierholzer
  • Maurice C. Kemp
  • Gregory A. Tannock
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 142)


Coronaviruses were classified as a distinct group of viruses in 19681 and are now recognized as the etiologic agents of an increasing number of diseases of man and animals2–7. At least four members of the group are human respiratory pathogens. Others have been suggested to be involved in neurologic and enteric disease processes in man, although none of these strains have yet been isolated in the true sense of the word.8–18 Respiratory strain B814 was the first human coronavirus discovered, having been isolated in human embryonic tracheal organ culture by Tyrrell & Bynoe in 1960.19 Strain 229E was recovered in secondary human fetal kidney cell cultures by Hamre & Procknow in 1962.20 Strain OC-43 and many related strains were then found by organ culture techniques in 1966 by McIntosh et al.21 Strain 692 was identified by immune electron microscopy in 1966 by Kapikian et al.22


Newcastle Disease Virus Infectious Bronchitis Virus Sedimentation Coefficient Rous Sarcoma Virus Strain 229E 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.A.J. Tyrrell, J.D. Almeida, D.M. Berry, C.H. Cunningham, D. Hamre, M.S. Hofstad, L. Mallucci, and K. McIntosh, Coronaviruses, Nature 220: 650 (1968).CrossRefGoogle Scholar
  2. 2.
    A.F. Bradburne and D.A.J. Tyrrell, Coronaviruses of man, Progr. Med. Virol. 13: 373 (1971).Google Scholar
  3. 3.
    J.C. Hierholzer, J.R. Broderson, and F.A. Murphy, New strain of mouse hepatitis virus as the cause of lethal enteritis in infant mice, Inf. Imm. 24: 508 (1979).Google Scholar
  4. 4.
    K. McIntosh, Coronaviruses: A comparative review, Current Topics in Microbiol. Immunol. 63: 85 (1974).Google Scholar
  5. 5.
    A.S. Monto, Coronaviruses, Yale J. Biol. Med. 47: 234 (1974).PubMedGoogle Scholar
  6. 6.
    J.A. Robb and C.W. Bond, Coronaviridae, Comprehensive Virology 14: 193 (1979).CrossRefGoogle Scholar
  7. 7.
    D.A.J. Tyrrell, D.J. Alexander, J.D. Almeida, C.H. Cunningham, B.C. Easterday, D.J. Garwes, J.C. Hierholzer, A. Kapikian, M.R. Macnaughton, and K. McIntosh, Coronaviridae: Second report, Intervirology 10: 321 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    H.W. Ackermann, G. Cherchel, J.P. Valet, J. Matte, S. Moorjani, and R. Higgins. Experiences sur la nature de particules trouvees dans der cas d’hepatite virale: type coronavirus, antigene Australia et particules de Dane, Can. J. Microbiol. 20: 193 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Apostolov, P. Spasic, and N. Bojanic, Evidence of a viral etiology in endemic (Balkan) nephropathy, Lancet 2: 1271 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    J.S. Burks, B.L. DeVald, L.D. Jankovsky, and J.C. Gerdes, Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients, Science 209: 933 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    E.O. Caul and S.K.R. Clarke, Coronavirus propagated from patient with non-bacterial gastroenteritis, Lancet 2: 953 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    E.O. Caul and S.I. Egglestone, Further studies on human enteric coronaviruses. Arch. Virol. 54: 107 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    E.O. Caul, W.K. Paver, and S.K.R. Clarke, Coronavirus particles in faeces from patients with gastroenteritis, Lancet 1: 1192 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    L. Georgescu, P. Diosi, I. Butiu, L. Plavosin, and G. Herzog, Porcine coronavirus antibodies in endemic (Balkan) nephropathy, Lancet 1: 163 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    A.W. Holmes, F. Deinhardt, W. Harris, F. Ball, and G. Cline, Coronaviruses and viral hepatitis, J. Clin. Invest. 49: 45a (1970).CrossRefGoogle Scholar
  16. 16.
    M. Mathan and V.I. Mathan, Coronaviruses and tropical sprue in southern India, in: Fourth Int. Cong. for Virol., The Hague, Behring Inst., Frankfurt Germany (1978).Google Scholar
  17. 17.
    R.D. Schnagl, I.H. Holmes, and E.M. Mackay-Scollay, Coronavirus-like particles in aboriginals and nonaboriginals in western Australia, Med. J. Australia 1: 307 (1978).PubMedGoogle Scholar
  18. 18.
    A.J. Zuckerman, P.E. Taylor, and J.D. Almeida, Presence of particles other than the Australia-SH antigen in a case of chronic active hepatitis with cirrhosis, Brit. Med. J. 1: 262 (1970).PubMedCrossRefGoogle Scholar
  19. 19.
    D.A.J. Tyrrell and M.L. Bynoe, Cultivation of a novel type of common-cold virus in organ cultures, Brit. Med. J. 1: 1467 (1965).PubMedCrossRefGoogle Scholar
  20. 20.
    D. Hamre and J.J. Procknow, A new virus isolated from the human respiratory tract, Proc. Soc. Exp. Biol. Med. 121: 190 (1966).PubMedGoogle Scholar
  21. 21.
    K. McIntosh, J.H. Dees, W.B. Becker, A.Z. Kapikian, and R.M. Chanock, Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease, Proc. Nat. Acad. Sci. 57: 933 (1967).PubMedCrossRefGoogle Scholar
  22. 22.
    A.Z. Kapikian, H.D. James, S.J. Kelly, and A.L. Vaughn, Detection of coronavirus strain 692 by immune electron microscopy, Inf. Imm. 7: 111 (1973).Google Scholar
  23. 23.
    A.F. Bradburne, Antigenic relationships amongst coronaviruses, Arch. Gesamte Virusforsch. 31: 352 (1970).PubMedCrossRefGoogle Scholar
  24. 24.
    K. McIntosh, A.Z. Kapikian, K.A. Hardison, J.W. Hartley, and R.M. Chanock, Antigenic relationships among the coronaviruses of man and between human and animal coronaviruses, J. Immun. 102: 1109 (1969).PubMedGoogle Scholar
  25. 25.
    K. McIntosh, J. McQuillin, S.E. Reed, and P.S. Gardner, Diagnosis of human coronavirus infection by immunofluorescence: Method and application to respiratory disease in hospitalized children, J. Med. Virol. 2: 341 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    A.S. Monto and L.M. Rhodes, Detection of coronavirus infection of man by immunofluorescence, Proc. Soc. Exp. Biol. Med. 155: 143 (1977).PubMedGoogle Scholar
  27. 27.
    J.C. Hierholzer and G.A. Tannock, Quantitation of antibody to non-hemagglutinating viruses by single radial hemolysis: Serological test for human coronaviruses, J. Clin. Microbiol. 5: 613 (1977).PubMedGoogle Scholar
  28. 28.
    H. Riski, T. Hovi, P. Väänänen, and K. Penttinen, Antibodies to human coronavirus OC 43 measured by radial haemolysis in gel, Scand. J. Inf. Pis. 9: 75 (1977).Google Scholar
  29. 29.
    H.S. Kaye and W.R. Dowdle, Some characteristics of hemagglutination of certain strains of “IBV-like” virus, J. Inf. Pis. 120: 576 (1969).CrossRefGoogle Scholar
  30. 30.
    J.C. Hierholzer, E.L. Palmer, S.G. Whitfield, H.S. Kaye, and W.R. Dowdle, Protein composition of coronavirus OC 43, Virology 48: 516 (1972).PubMedCrossRefGoogle Scholar
  31. 31.
    H.S. Kaye, J.C. Hierholzer, and W.R. Dowdle, Purification and further characterization of an “IBV-like” virus (coronavirus), Proc. Soc. Exp. Biol. Med. 135: 457 (1970).PubMedGoogle Scholar
  32. 32.
    J. Pokorny, M. Bruckova, and M. Ryc, Biophysical properties of coronavirus strain OC-43, Acta Virol. 19: 137 (1975).PubMedGoogle Scholar
  33. 33.
    G. Gerna, E. Cattaneo, P.M. Cereda, M.G. Revelo, and G. Achilli, Human coronavirus OC-43 serum inhibitor and neutralizing antibody by a new plaque-reduction assay, Proc. Soc. Exp. Biol. Med. 163: 360 (1980).PubMedGoogle Scholar
  34. 34.
    A.Z. Kapikian, H.D. James, S.J. Kelly, L.M. King, A.L. Vaughn, and R.M. Chanock, Hemadsorption by coronavirus strain OC-43, Proc. Soc. Exp. Biol. Med. 139: 179 (1972).PubMedGoogle Scholar
  35. 35.
    T. Hovi, H. Kainulainen, B. Ziola, and A. Salmi, OC 43 strainrelated coronavirus antibodies in different age groups, J. Med. Virol. 3: 313 (1979).PubMedCrossRefGoogle Scholar
  36. 36.
    G. Gerna, G. Achilli, E. Cattaneo, and P. Cereda, Determination of coronavirus 229E antibody by an immune-adherence hemagglutination method, J. Med. Virol. 2: 215 (1978).PubMedCrossRefGoogle Scholar
  37. 37.
    H.S. Kaye, S.B. Ong, and W.R. Dowdle, Detection of coronavirus 229E antibody by indirect hemagglutination, Appl. Microbiol. 24: 703 (1972).PubMedGoogle Scholar
  38. 38.
    C.A. Kraaijeveld, M.H. Madge, and M.R. Macnaughton, Enzymelinked immunosorbent assay for coronaviruses HCV 229E and MHV 3, J. Gen. Virol. 49: 83 (1980).PubMedCrossRefGoogle Scholar
  39. 39.
    A.V. Sheboldov, L.Y. Zakstelskaya, and V.M. Zhdanov, Sedimentation and density characteristics of coronavirus, Vopr. Virusol. 1: 59 (1973).Google Scholar
  40. 40.
    J.C. Hierholzer, Purification and biophysical properties of human coronavirus 229E, Virology 75: 155 (1976).PubMedCrossRefGoogle Scholar
  41. 41.
    M.R. Macnaughton, B.J. Thomas, H.A. Davies, and S. Patterson, Infectivity of human strain 229E, J.Clin.Micr. 12: 462 (1980).Google Scholar
  42. 42.
    M.R. Macnaughton, The polypeptides of human and mouse coronaviruses, Arch. Virol. 63: 75 (1980).PubMedCrossRefGoogle Scholar
  43. 43.
    G.A. Tannock, and J.C. Hierholzer, The RNA of human coronavirus OC-43, Virology 78: 500 (1977).PubMedCrossRefGoogle Scholar
  44. 44.
    G.A. Tannock, and J.C. Hierholzer, Presence of genomic polyadenylate and absence of detectable virion transcriptase in human coronavirus OC-43, J. Gen. Virol. 39: 29 (1978).PubMedCrossRefGoogle Scholar
  45. 45.
    G.A. Tannock, The nucleic acid of infectious bronchitis virus, Arch. Gesamte Virusforsch. 43: 259 (1973).PubMedCrossRefGoogle Scholar
  46. 46.
    D.J. Garwes, D.H. Pocock, and T.M. Wijaszka, Identification of heat-dissociable RNA complexes in two porcine coronaviruses, Nature 257: 508 (1975).PubMedCrossRefGoogle Scholar
  47. 47.
    M.W. Pons, Influenza virus messenger ribonucleoprotein, Virology 67: 209 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    M. Adesnik, and J.E. Darnell, Biogenesis and characterization of histone messenger RNA in HeLa cells, J. Mol. Biol. 67: 397 (1972).PubMedCrossRefGoogle Scholar
  49. 49.
    B.P. Holloway, and J.F. Obijeski, Rabies virus-induced RNA synthesis in BHK-21 cells, J. Gen. Virol. 49: 181 (1980).PubMedCrossRefGoogle Scholar
  50. 50.
    D.F. Stern, and S.I.T. Kennedy, Coronavirus multiplication strategy. I. Identification and characterization of virus-specified RNA, J. Virol. 34: 665 (1980).PubMedGoogle Scholar
  51. 51.
    M.R. Macnaughton, and M.H. Madge, The genome of human coronavirus strain 229E, J. Gen. Virol. 39: 497 (1978).PubMedCrossRefGoogle Scholar
  52. 52.
    D.A. Kennedy, and C.M. Johnson-Lussenburg, Inhibition of coronavirus 229E replication by actinomycin D, J. Virol. 29: 401 (1978).Google Scholar
  53. 53.
    W.B. Becker, K. McIntosh, J.H. Dees, and R.M. Chanock, Morphogenesis of avian infectious bronchitis virus and a related human virus (strain 229E), J. Virol, 1: 1019 (1967).PubMedGoogle Scholar
  54. 54.
    R.A. Bucknall, A.R. Kalica, and R.M. Chanock, Intracellular development and mechanism of hemadsorption of a human coronavirus, OC43, Proc. Soc. Exp. Biol. Med. 139: 811 (1972).PubMedGoogle Scholar
  55. 55.
    H.A. Davies, and M.R. Macnaughton, Comparison of the morphology of three coronaviruses, Archives of Virology 59: 25 (1979).PubMedCrossRefGoogle Scholar
  56. 56.
    L.S. Oshiro, J.H. Schieble, and E.H. Lennette, Electron microscopic studies of coronavirus, J. Gen. Virol. 12: 161 (1971).PubMedCrossRefGoogle Scholar
  57. 57.
    E.O. Caul, C.R. Ashley, M. Ferguson, and S.I. Egglestone, Preliminary studies on the isolation of coronavirus 229E nucleocapsids, FEMS Microbiol. Letters 5: 101 (1979).CrossRefGoogle Scholar
  58. 58.
    D.A. Kennedy, and C.M. Johnson-Lussenburg, Isolation and morphology of the internal component of human coronavirus strain 229E, Intervirology 6: 197 (1976).CrossRefGoogle Scholar
  59. 59.
    M.R. Macnaughton, H.A. Davies, and M.V. Nermut, Ribonucleo-protein-like structures from coronavirus particles, J. Gen. Virol. 39: 545 (1978).CrossRefGoogle Scholar
  60. 60.
    J. Lenard, and R.W. Compans, The membrane structure of lipidcontaining viruses, Biochem. Biophys. Acta 344: 51 (1974).PubMedCrossRefGoogle Scholar
  61. 61.
    R.W. Compans, and M.C. Kemp, Membrane glycoproteins of enveloped viruses, in: “Current Topics in Membranes and Transport” (R.L. Juliano and A. Rothstein, eds.), Vol. 11, Academic Press, New York, (1978).Google Scholar
  62. 62.
    R.W. Compans, and H.-D. Klenk, Viral membranes, in: “Comprehensive Virology,” (H. Fraenkel-Conrat and R.R. Wagner, eds.), Vol. 13, Plenum Press, New York (1979).Google Scholar
  63. 63.
    B.W. Burge, and J.H. Strauss, Glycopeptides of the membrane glycoprotein of Sindbis virus, J. Mol. Biol. 47: 449 (1970).PubMedCrossRefGoogle Scholar
  64. 64.
    B. Sefton, and K. Keegstra, Glycoproteins of Sindbis virus: Preliminary characterization of the oligosaccharides, J. Virol. 14: 522 (1974).PubMedGoogle Scholar
  65. 65.
    K. Keegstra, B. Sefton, and D. Burke, Sindbis virus glycoproteins: Effect of the host cell on the oligosaccharides, J. Virol. 16: 613 (1975).PubMedGoogle Scholar
  66. 66.
    K. Nakamura, and R.W. Compans, Glycopeptide components of influenza viral glycoproteins, Virology 86: 432 (1978).PubMedCrossRefGoogle Scholar
  67. 67.
    K. Nakamura, and R.W. Compans, Biosynthesis of the oligosaccharides of influenza viral glycoproteins, Virology 93: 31 (1979).PubMedCrossRefGoogle Scholar
  68. 68.
    R.T. Schwarz, M.F.G. Schmidt, U. Anwer, and H.-D. Klenk, Carbohydrates of influenza virus. I. Glycopeptides derived from viral glycoproteins after labeling with radioactive sugars, J. Virol. 23: 217 (1977).PubMedGoogle Scholar
  69. 69.
    S.A. Moyer, J.M. Tsang, P.H. Atkinson and D.F. Summers, Oligosaccharide moieties of the glycoprotein of vesicular stomatitis virus, J. Virol. 18: 167 (1976).PubMedGoogle Scholar
  70. 70.
    J.R. Etchison, J.S. Robertson, and D.F. Summers, Partial structural analysis of the oligosaccharide moieties of the vesicular stomatitis glycoprotein by sequential chemical and enzymatic degradation, Virology 78: 375 (1977).PubMedCrossRefGoogle Scholar
  71. 71.
    M.C. Kemp, S. Basak, and R.W. Compans, Glycopeptides of murine leukemia viruses. I. Comparison of two ecotropic viruses. J. Virol. 31: 1 (1979).PubMedGoogle Scholar
  72. 72.
    M.C. Kemp, N.G. Famulari, P.V. O’Donnell, and R.W. Compans, Glycopeptides of murine leukemia viruses. II. Comparison of xenotropic and dual-tropic viruses, J. Virol. 34: 154 (1980).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • John C. Hierholzer
    • 1
  • Maurice C. Kemp
    • 1
  • Gregory A. Tannock
    • 2
  1. 1.Respiratory Virology Branch Virology DivisionCenter for Disease ControlAtlantaUSA
  2. 2.G.A.T.: Division of Clinical Investigation Faculty of MedicineUniversity of NewcastleAustralia

Personalised recommendations