Comparison of the RNAs of Murine and Human Coronaviruses

  • Susan R. Weiss
  • Julian L. Leibowitz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 142)


Coronaviruses cause acute and/or persistent disease in many species of animals. One factor that determines target organ and lethality of coronavirus infection is the strain of virus (McIntosh, 1972; Robb et al., 1980). For example most strains of mouse hepatitis virus (MHV), such as A59 and MHV3, were isolated from the livers of infected mice and are primarily hepatotropic (McIntosh, 1974). In contrast the JHM strain of MHV is primarily neurotropic (McIntosh 1974: Bailey et al., 1949). Most MHV strains are closely related serologically (McIntosh, 1974).


Molecular Hybridization Human Coronavirus Avian Sarcoma Virus Human CORONAVIRUSES Intracellular RNAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alwine, J.C., Kemp, D.J. and Stark, G.R. 1977, Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl paper and hybridization with DNA probes. Proc. Nat. Acad. Sci 74: 5350–5354.PubMedCrossRefGoogle Scholar
  2. Aviv, H. and Leder, P. 1972, Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid cellulose. Proc. Nat. Acad. Sci. 69: 1408–1412.PubMedCrossRefGoogle Scholar
  3. Bailey, O.T., Pappenheimer, A.M., Sergent, F., Cheever, M.D., and Daniels, J.B. 1949, A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. J. Expt. Med. 90: 195–212.CrossRefGoogle Scholar
  4. Bailey, J. and Davidson, N. 1976, Methyl mercury as a reversible denaturing agent for agarose-gel electrophoresis. Analyt. Biochem. 20: 75–85.CrossRefGoogle Scholar
  5. Bond, C.W., Leibowitz, J.L., and Robb, J.A. 1979, Pathogenic murine coronaviruses, II. Characterization of virus-specific proteins of murine coronavirus. Virology 94: 371–384PubMedCrossRefGoogle Scholar
  6. Burks, J., DeVald, B.L., Jankovsky, L.D. Gerdes, J.C. 1980, Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science 209: 933–934.PubMedCrossRefGoogle Scholar
  7. Cancedda, R., Villa-Kamaroff, L., Lodish, H.F., and Schlesinger, M. 1974, Initiation sites for translation of sindbis virus 42S and 26S messenger RNAs. Cell 6: 215–222CrossRefGoogle Scholar
  8. Chamberlain, J.P. 1979, Fluorographic detection of radioactivity in polyacrylamide gels with the water soluble fluor, sodium salicylate. Analyt. Biochem. 48: 132–135.CrossRefGoogle Scholar
  9. Deininger, P., Esty, A., LaPorte, P., and Friedman, T. 1979, Nucleotide sequence and genetic organization of the polyoma late region: features common to the polyoma early region and SV40. Cell 18: 771–779.PubMedCrossRefGoogle Scholar
  10. Dick, G.W.A., Niven, J.S.F., Gledhill, A.W. 1956, A virus related to that causing hepatitis in mice (MHV). Brit. J. Expt. Path. 37: 90.Google Scholar
  11. Hamre, D. and Procknow, J.J. 1966, A new virus isolated from the human respiratory track. Proc. Soc. Expt. Biol. Med. 121: 190–193.Google Scholar
  12. Hierholzer, J.C. 1976, Purification and biophysical properties of of human coronavirus 229E. Virology 75: 155–165.PubMedCrossRefGoogle Scholar
  13. Howley, P.M., Israel, M.A., Law, M.F., Martin, M.A. 1980, Proc. Nat. Acad. Sci. 254: 4876–4883.Google Scholar
  14. Kennedy, D.A. and Johnson-Lussenberg, C.M. 1975–1976. Isolation and morphology of the internal component of human coronavirus, 229E. Intervirology 6: 197–206.PubMedCrossRefGoogle Scholar
  15. Lee, Y.F., Kitamura, N., Nomato, A. and Wimmer, E. 1979, Sequence studies of poliovirus type 1, type 2, and two type 1 defective interfering particles RNAs. J. Gen. Virol. 44: 311–322.PubMedCrossRefGoogle Scholar
  16. Leong, J.A., Garapin, A.C., Jackson, N., Fanshier, L., Levinson, W., and Bishop, J.M. 1972, Virus-specific ribonucleic acid in cells. producing Rous sarcoma virus: Detection and characterization. J. Virol. 9: 891–902.PubMedGoogle Scholar
  17. McNaughton, M.R, 1978, The genomes of three coronaviruses. FEBS Letters 94: 191: 194.Google Scholar
  18. McNaughton, M.R. and Madge, M.H. 1978, The genome of human coronavirus 229E. J. Gen. Virol. 39: 497–504.CrossRefGoogle Scholar
  19. McIntosh, K. 1974, Coronaviruses: A comparative review. Current Topics in Microbiology and Immunology. 63: 85–129Google Scholar
  20. Opperman, H., Bishop, J.M., Varmus, H.E. and Levintow, L. 1977, A joint product of the genes gag and pol of avian sarcoma virus: a possible precursor of reverse transcriptase. Cell 12: 993–1005.CrossRefGoogle Scholar
  21. Parker, B. and Stark, G. 1979. Regulation of simian virus 40 transcription: Sensitive analysis of the RNA species present early in infection by virus or viral DNA. J. Virol. 31: 360–369.PubMedGoogle Scholar
  22. Robb, J.A. and Bond, C.W. 1980. Coronaviridae. Comprehensive Virology 14: 193–245.Google Scholar
  23. Robb, J.A., Bond, C.W. and Leibowitz, J.L. 1979, Pathogenic murine coronaviruses. I. Characterization of biological behavior in vitro and virus specific intracellular RNA of strongly neurotropic JHMV and weakly neurotropic A59V viruses. Virology 94: 385–399.PubMedCrossRefGoogle Scholar
  24. Siddell, S.G., Wege, H., Barthel, A. and ter Meulen V. 1980. Cellfree synthesis of structural protein pp 60.Google Scholar
  25. Spector, D.H., Smith, K., Padgett, T., McCombe, P., Roulland-Dussoix, D., Moscovici, C., Varmus, H.E., and Bishop, J.M. 1978. Uninfected cells contain RNA related to the transforming gene of avion sarcoma viruses. Cell 13: 371–379.PubMedCrossRefGoogle Scholar
  26. Stern, D. and Kennedy, S.I.T. 1980, The coronavirus multiplication strategy. I. Identification and characterization of virus specific RNA. J. Virol. 34: 665–674.PubMedGoogle Scholar
  27. Sturman, L.S. and Takemoto, K.K. 1972, Enhanced growth of a murine coronavirus in transformed mouse cells. Infection and Immunity 6: 501–507.PubMedGoogle Scholar
  28. Tal, J., Kung, H.J., Varmus, H.E. and Bishop, JM 1977. Characterization of DNA complementary to nucleotide sequences adjacent to poly(A) at the 3′ terminus of the avian sarcoma virus genome. Virology 78: 183–197.CrossRefGoogle Scholar
  29. Taylor, J.M., Illmensee, R., and Sommers, S. 1976, Efficient transscription of RNA into DNA by avian sarcoma virus polymerase. Biochim. Biophys. Acta. 442: 324–330.PubMedCrossRefGoogle Scholar
  30. Weiss, S.R., Varmus, H.E. and Bishop, J.M. 1977, The size and genetic composition of virus-specific RNAs in the cytoplasm of cells producing avian sarcoma-leukosis viruses. Cell 12: 983–992.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Susan R. Weiss
    • 1
  • Julian L. Leibowitz
    • 2
  1. 1.Department of MicrobiologyUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of PathologyUniversity of California, San Diego Medical SchoolLa JollaUSA

Personalised recommendations