Pair Conversion in Sub- and Supercritical Potentials

  • Ch. Hofmann
  • J. Reinhardt
  • G. Soff
  • W. Greiner
  • P. Schlüter
Part of the NATO ASI Series book series (NSSB, volume 255)


We study the angular correlation of electrons and positrons which are emitted in internal pair conversion (IPC). This process is not only of interest in nuclear physics where our work supplements the early calculations of Rose [1] who employed the plane wave Born approximation. Since in different experiments at the Gesellschaft für Schwerionenforschung (GSI) two collaborations (ORANGE, EPOS) [2] have measured narrow peak structures in electron and positron spectra, the various pair creating processes have to be considered in more detail. The spectra are recorded in heavy-ion collisions with energies near the Coulomb barrier. The origin of these narrow lines is presently not understood although various explanations have been proposed [3].


Angular Correlation Nuclear Charge Born Approximation Coulomb Barrier Anisotropy Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. Rose, Phys. Rev. 76, 678 (1949)ADSMATHCrossRefGoogle Scholar
  2. 2.
    W. Koenig, E. Berdermann, F. Bosch, S. Huchler, P. Kienle, C. Kozhuharov, A. Schröter, S. Schuhbeck, H. Tsertos, Phys. Lett. B218, 12 (1989)Google Scholar
  3. H. Bokemeyer, P. Salabura, D. Schwalm, K. E. Stiebing, in O. Fackler, J. Tran Thanh Van eds., Tests of Fundamental Laws in Physics, Series: Moriond Workshops, (Editions Frontièrs, Gif-sur-Yvette, 1989 ), p. 77Google Scholar
  4. 3.
    B. Müller, in R. Marrus ed., Atomic Physics of Highly Ionized Atoms, ( Plenum Press, New York, 1989 ), p. 39CrossRefGoogle Scholar
  5. A. Schäfer, J. Phys. G15, 373 (1989)ADSCrossRefGoogle Scholar
  6. 4.
    P. Schlüter, U. Müller, G. Soff, Th. de Reus, J. Reinhardt, W. Greiner, Z. Phys. A323, 139 (1986)ADSGoogle Scholar
  7. 5.
    M. Krämer, B. Blank, E. Bozek, E. Ditzel, E. Kankeleit, G. Klotz-Engmann, C. Mfintz, H. Oeschler, M. Rhein, P. Senger, Phys. Rev. C40, 1662 (1989)ADSGoogle Scholar
  8. 6.
    O. Graf, J. Reinhardt, B. Müller, W. Greiner, G. Soff, Phys. Rev. Lett. 61, 2831 (1988)ADSCrossRefGoogle Scholar
  9. 7.
    C. Hofmann, J. Reinhardt, W. Greiner, P. Schlüter, G. Soff, Preprint GSI-90–31, Phys. Rev. C, in printGoogle Scholar
  10. 8.
    M. E. Rose, Relativistic Electron Theory, ( Wiley, New York, 1961 )MATHGoogle Scholar
  11. 9.
    H. A. Bethe, L. C. Maximon, Phys. Rev. 93, 768 (1954)MathSciNetADSCrossRefGoogle Scholar
  12. 10.
    P. Schlüter, G. Soff, W. Greiner, Phys. Rep. 75, 327 (1981)ADSCrossRefGoogle Scholar
  13. 11.
    G. Soff, P. Schlüter, W. Greiner, Z. Phys. A303, 189 (1981)ADSGoogle Scholar
  14. 12.
    B. Müller, J. Rafelski, W. Greiner, Z. Phys. 257, 62 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Ch. Hofmann
    • 1
  • J. Reinhardt
    • 1
  • G. Soff
    • 2
  • W. Greiner
    • 1
  • P. Schlüter
    • 3
  1. 1.Institut für Theoretische PhysikUniversität FrankfurtFrankfurt a.M. 11Germany
  2. 2.Gesellschaft für Schwerionenforschung (GSI)DarmstadtGermany
  3. 3.Zentralabteilung Forschung und EntwicklungSiemens AGMünchen 83Germany

Personalised recommendations