Symplectic and Large-N Gauge Theories

  • George Savvidy
Part of the NATO ASI Series book series (NSSB, volume 255)


In our world the number of quark colors N is equal to three.Many years ago ’t Hooft noticed,1 that it is extremely useful to treat N as a free parameter and to consider the large-N limit.ln the large-N limit the structure of the theory partly simplifies, that is only planar graphs survive,i.e. a graph,which does not have overlapping lines.Nonplanar graphs have factors 1/N and it is very tempting therefore to make 1/N expansion.


Gauge Theory Gauge Field Central Extension Planar Diagram Topological Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.’t Hooft,A planar diagram theory for strong interaction, Nucl.Phys. B72: 461 (1974).CrossRefGoogle Scholar
  2. 2.
    G.’t Hooft,A two-dimensional model for mesons,Nucl.Phys.B75:461 (1974).Google Scholar
  3. 3.
    T.Eguchi and H.Kawai,Reduction of dynamical degrees of freedom in the large-N gauge theory,Phys.Rev.Lett.48:47 (1982).Google Scholar
  4. 4.
    A.M.Polyakov,“Gauge fields and strings”,Harwood academic publishers, NY,)1987)Google Scholar
  5. 5.
    J.Hoppe,Quantum theory of a relativistic surface and a two-dimensional bound state problem,Ph.D. Thesis MIT (1982).Google Scholar
  6. 6.
    M.E.Laziev and G.K.Savvidy,Transversity of open relativistic membrane, Phys.Lett. 198B: 451 (1987)MathSciNetGoogle Scholar
  7. 7.
    G.K.Savvidy,Transversity of a massless relativistic surface.Quantization in the light-cone gauge,preprint CERN-TH 4820/87;Yad.Fiz.47:1176(1988)Google Scholar
  8. 8.
    G.Z.Baseian,S.G.Matinian and G.K.Savvidy,Nonlinear plane waves in Yang Mills theory,Pisma Zh.Eksp.Teor.Fiz.29:641(1979) (in russian).Google Scholar
  9. 9.
    S.G.Matinian,G.K.Savvidy and Ter-Arutyunyan,Classical Yang Mills mechanics.Nonlinear color oscillation,Sov.Phys.Jetp.53:421 (1981).Google Scholar
  10. 10.
    G.K.Savvidy,Classical and quantum mechanics of nonabelian gauge fields, Nucl.Phys. B246: 302 (1984).Google Scholar
  11. 11.
    T.A.Arakelian and G.K.Savvidy,Cocycles of area preserving diffeomorphism and anomalies in the theory of relativistic surfaces,Phys.Lett. 214B:350 (1988)Google Scholar
  12. 12.
    E.G.Floratos,J.11liopoulos and G.Tiktopoulos,SU(),Classical Yang Mills theories,Phys.Lett.2178:285 (1989)Google Scholar
  13. 13.
    B.Biran,E.G.Floratos and G.K.Savvidy,The self-dual closed bosonic membranes,Phys.Lett.198B:328 (1988).Google Scholar
  14. 14.
    E.G.Floratos and G.K.Leontaris,lntegrability of self-dual membranes in 4+1 dimension and toda lattice,Phys.Lett.223B:153 (1989). 15.S.V.Giddings and A.Strominger,Axion-induced topology change in quantum gravity and string theory,Nucl.Phys.B306:890 (1988)Google Scholar
  15. 16.
    D.B.Fuks,Cohomology of infinite dimensional Lie algebras,ed.R.Gamkrelidg (Steklov Institute,Moscow,1986).Google Scholar
  16. 17.
    E.G.Floratos and J.Illiopoulos,A note on the classical symmetries of the closed bosonic membranes,Phys.Lett.201B:237 (1988).Google Scholar
  17. 18.
    Bars,C,Pope and E.Sezgin,Central extension of area preserving membrane algebra,Phys.Lett.210B:85 (1988)Google Scholar
  18. 19.
    D.Fairlie,P.Fletcher and C.K.Zachos,Trigonometric structure constants for new infinite algebras,Phys.Lett.218B:203 (1989).Google Scholar
  19. 20.
    C.K.Zachos and D.B.Fairlie,New infinite-dimensional algebras,sine bracket,and SUI),Phys.Lett.224B:101 (1989)Google Scholar
  20. 21.
    I.Bars,Strings from reduced large-N gauge theory via area preserving diffeomorphisms,preprint USC-90/HEP-12,February (1990).Google Scholar
  21. 22.
    V.G.Kac and A.K.Raina,Bombay lectures on“highest-weight representation of infinite dimensional Lie algebras”,World Scientific 1987,Singapore.Google Scholar
  22. 23.
    G.K.Savvidy,Renormalization of infinite dimensional gauge theories, preprint TPI-MINN-90/02-T,January (1990).Google Scholar
  23. 24.
    A.A.Belavin,Hidden symmetry of the integrabel system,JETP Lett.32:169 (1980)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • George Savvidy
    • 1
  1. 1.Yerevan Physics InstituteYerevan ArmeniaUSSR

Personalised recommendations