Zero-Point Field in Non-Inertial or Confined Systems (Physically Measurable Manifestations of Vacuum)

  • Antonio Sarmiento
Part of the NATO ASI Series book series (NSSB, volume 255)


The main motivation for studying the spectrum of the zero-point field in either non-inertial or confined systems is the fact that this spectrum is Lorentz invariant; that is, in order to observe it one has to go to a non-inertial system. Well known examples of phenomena associated with the zero-point field are: the Casimir effect(1), Hawking’s radiation(2), accelerated mirrors radiating(3,4) and the Einstein universe(5); in the first and the last examples there are explicit boundaries while in the other two there are horizon events: all are bounded systems and this limitation is responsible for the thermal character of the spectrum and for the modification of the states density in phase space(6,7).


Inertial Frame Particle Number Density Casimir Effect Wightman Function Thermal Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. B. G. Casimir, Koninkl. Ned. Akad. Wetenschap. Prod. B51:793 (1948).Google Scholar
  2. G. Plunien, B. Müller, and W. Greiner, Phys. Rep. 134:87 (1986).Google Scholar
  3. 2.
    S. W. Hawking, Nature 248:30 (1974); Commun. Math Phys. 43:199 (1975).Google Scholar
  4. 3.
    P. C. W. Davies, J. Phys. A8: 609 (1975).ADSGoogle Scholar
  5. 4.
    W. G. Unruh, Phys. Rev. D14: 870 (1975).Google Scholar
  6. 5.
    L. H. Ford, Phys. Rev. D11: 3370 (1975).ADSGoogle Scholar
  7. 6.
    D. W. Sciama, P. Candelas, and D. Deutsch, Adv Phys. 30:327 (1981).Google Scholar
  8. 7.
    F. Soto, G. Cocho, C. Villarreal, S. Hacyan, and A. Sarmiento, Rev. Mex. Fis. 33:389 (1987).Google Scholar
  9. 8.
    S. Hacyan, A. Sarmiento, G. Cocho and F. Soto, Phys. Rev. D32: 914 (1985).Google Scholar
  10. 9.
    S. Hacyan, Phys. Rev. D32:3216 (1985).Google Scholar
  11. 10.
    A. Sarmiento, S. Hacyan, F. Soto, G. Cocho, and C. Villarreal, preprint IFUNAM (1988).Google Scholar
  12. 11.
    L. H. Ford, Phys. Rev. D38: 528 (1988);ADSGoogle Scholar
  13. P. C. W. Davies, Z. X. Liu, and A. C. Ottewill, Class. Quant. Gravity 6:1041 (1989)Google Scholar
  14. S. Hacyan, R. JAuregui, F. Soto, and C. Villarreal, J. Phys. A23: 2401 (1990).MathSciNetADSGoogle Scholar
  15. 12.
    A. Sarmiento and S. Hacyan, Phys. Rev. D38:1331 (1988).Google Scholar
  16. 13.
    S. Hacyan and A. Sarmiento, Phys. Lett. B179:287 (1986).Google Scholar
  17. 14.
    S. Hacyan and A. Sarmiento, Phys. Rev. D40:2641 (1989).Google Scholar
  18. 15.
    G. Cocho, F. Soto, S. Hacyan, and A. Sarmiento, preprint IAUNAM-186 (1986); Int. J. Theoret. Phys. 28:699 (1989)Google Scholar
  19. 16.
    A. Sarmiento, S. Hacyan, G. Cocho, F. Soto and C. Villarreal, Phys. Lett. A142:194 (1989).Google Scholar
  20. 17.
    J. S. Bell and J. M. Leinaas, Nucl. Phys. B212:131 (1983)Google Scholar
  21. 18.
    C. Villarreal, this volume.Google Scholar
  22. 19.
    P. Candelas, and D. Deutsch, Proc. Roy. Soc. London A254:79 (1977); Jaid. A362:251 (1978).Google Scholar
  23. 20.
    T. Boyer, Phys. Rev. D21: 2137 (1980).ADSCrossRefGoogle Scholar
  24. 21.
    S. Hacyan, Phys. Rev. 33:3630 (1986).Google Scholar
  25. 22.
    D. Birrel and P. C. W. Davies. “Quantum Fields in Curved Spaces ( Cambridge University Press, Cambridge, 1982 ).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Antonio Sarmiento
    • 1
  1. 1.Instituto de AstronomiaUNAMMéxico D.F.México

Personalised recommendations