The (First) Three B’s of the Skyrme Model

  • Alec J. Schramm
Part of the NATO ASI Series book series (NSSB, volume 255)


It is widely believed that Quantum Chromodynamics is the correct underlying theory of the strong interaction. Such belief exists despite our rather limited ability to investigate the long wavelength limit, where the poorly understood effects of confinement set in. In fact, the very structure of the QCD vacuum remains a mystery, and it is hoped that a better understanding of this vacuum will shed considerable light on the nature of the confinement mechanism.


Baryon Number Skyrme Model Minimum Energy Configuration Pion Field Chiral Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.H.R. Skyrme, Proc. Roy. Soc. A260, 127 (1961); Nucl. Phys. 31, 556 (1962).CrossRefGoogle Scholar
  2. 2.
    D. Finkelstein and J. Rubinstein, J. Math. Phys. 9, 1762 (1968).MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    E. Witten, Nucl. Phys. B223, 443 (1983).ADSGoogle Scholar
  4. 4.
    A.P. Balachandran, V.P. Nair, S.G. Rajeev, and A. Stern, Phys. Rev. D27, 1153 (1983).ADSGoogle Scholar
  5. A.P. Balachandran, in High Energy Physics 1985,eds. M.J. Bowick and F. Gursey, World Scientific (1985); I. Zahed and G.E. Brown, Phys. Rep. 142, 1 (1986); G. Holzwarth and B. Schwesinger, Rep. Prog. Phys. 49 825 (1986).Google Scholar
  6. 6.
    G. Adkins, C. Nappi, and E. Witten, Nucl. Phys. B228, 552 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    E. Witten, in Solitons in Nuclear and Elementary Particle Physics, eds. A. Chodos, E. Hadjimichael, and C. Tze, World Scientific (1984).Google Scholar
  8. 8.
    G. Adkins and C. Nappi, Phys. Lett. B137, 251 (1984); G. Adkins, Phys. Rev. D33, 193 (1986).Google Scholar
  9. 9.
    A.P. Balachandran, F. Lizzi, and V.G.J. Rodgers, Nucl. Phys. B256, 525 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    A. Jackson, A.D. Jackson, and V. Pasquier, Nucl. Phy. A432, 567 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    E. Braaten and L. Carson, Phys. Rev. Lett. 56, 1897 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    V.B. Kopeliovich and B.E. Shtern, Soy. Phys. JETP Lett. 45, 203 (1987); J.J.M. Verbaarschot, T.S. Walhout, J. Wambach, and H.W. Wyld, Nucl. Phys. A468, 520 (1987).CrossRefGoogle Scholar
  13. 13.
    A.J. Schramm, Phys. Rev. C37, 1799 (1988); A.J. Schramm, Y. Dothan, and L.C. Biedenharn, Phys. Lett. B205, 151 (1988).Google Scholar
  14. 14.
    G. Adkins and C. Nappi Nucl. Phys. B233, 109 (1984).Google Scholar
  15. 15.
    N.S. Manton, Phys. Lett. B192, 177 (1987); J.J.M.Verbaarschot, Phys. Lett. B195, 235 (1987).Google Scholar
  16. 16.
    E. Braaten and L. Carson, Phys. Rev. D38, 3525 (1988); Phys. Rev. D39, 838 (1989).Google Scholar
  17. 17.
    E. Braaten, S. Townsend, and L. Carson, Phys. Lett. B235, 147 (1990).Google Scholar
  18. 18.
    E. Witten, Nucl. Phys. B160, 57 (1979).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Alec J. Schramm
    • 1
  1. 1.Department of PhysicsDuke UniversityDurhamUSA

Personalised recommendations