Skip to main content

Quantum Vacuum, Confinement, and Acceleration

  • Chapter
Vacuum Structure in Intense Fields

Part of the book series: NATO ASI Series ((NSSB,volume 255))

  • 166 Accesses

Abstract

Hawking radiaton by black holes [1] can be understood in terms of the Doppler distortion undergone by the modes of a quantum vacuum field in the presence of a gravitational source [2]. A very different phenomenum, the Casimir effect [3], arises from the distortion of the vacuum produced by boundaries. Both phenomena have a common origin: they are manifestations of the restrictions that event horizons or physical boundaries impose to a quantum vacuum field. Such restrictions may confer to the vacuum state a complex structure. The vacuum structure will be analysed here for inertial and non-inertial observers in vacua confined by boundaries. Gravitational effects will be analysed elsewhere in this book by A. Sarmiento.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.W. Hawking, Nature 248 (1974) 30

    Article  ADS  Google Scholar 

  2. S. Hacyan, A. Sarmiento, G. Cocho, and F. Soto, Phys. Rev. D32 (1985) 3216

    MathSciNet  Google Scholar 

  3. H.B.G. Casimir, Proc. Kon. Ned. Akad. Wet. 51 (1948) 793

    MATH  Google Scholar 

  4. G.Plunien, B. Muller, W. Greiner, Phys. Rep. 134 (1986) 87

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Hacyan, R. Jâuregui, F. Soto, and C. Villarreal, J. ofPhysics23 (1990) 2401

    Google Scholar 

  6. L.H. Ford, Phys. Rev. 4D38 (1988) 528.

    Google Scholar 

  7. S. Haroche and D. Kleppner, Phys. Today 42 (1989) 24.

    Article  ADS  Google Scholar 

  8. A. Sarmiento, S. Hacyan, G. Cocho, F. Soto, and C. Villarreal, Phys. Lett. A142 (1989) 194.

    Article  Google Scholar 

  9. B.J. Harrington and Ch.H. Tabb, Phys. Lett. 496B (1980) 362.

    MathSciNet  Google Scholar 

  10. J. Bartke et al., Nucl. Phys. B117 (1976) 293; B118 (1977) 14; B118 (1977) 360; H. Boggild et al., Nucl. Phys. B57 1(1973) 77; I.V. Ajinenko et al., Nucl. Phys. B165 (1980) 1; T.F. Hoang, C.K. Chew and K.K. Phua, Phys. Rev. D19 (1979) 1468. Phys. Lett. A142 (1989) 194.

    Google Scholar 

  11. D. Bender et al., Phys. Rev. D31 1(1985) 1.

    Google Scholar 

  12. EHS-RCBC Collaboration, Phys. Lett. B206 (1988) 371.

    Google Scholar 

  13. G. Cocho, S. Hacyan, F. Soto, C. Villarreal, and A. Sarmiento, Preprint IFUNAM (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Villarreal, C. (1991). Quantum Vacuum, Confinement, and Acceleration. In: Fried, H.M., Müller, B. (eds) Vacuum Structure in Intense Fields. NATO ASI Series, vol 255. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0441-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0441-9_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0443-3

  • Online ISBN: 978-1-4757-0441-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics