Functional Approach to Strong-Coupling in (QED)4 and (QCD)4

  • H. M. Fried
Part of the NATO ASI Series book series (NSSB, volume 255)


In these Lectures, the “Infrared (IR) Method” for extracting relevant low-frequency behavior is described for four-dimensional QED and QCD, using different techniques appropriate to the different theories. The subjects briefly covered are the following.


Radiative Correction Functional Integral Virtual Photon Lepton Pair Feynman Graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Guérin and H.M. Fried, Phys. Rev. D33 (1986) 3039ADSCrossRefGoogle Scholar
  2. H.M. Fried and T. Grandou, Phys. Rev. D33 (1986) 1151Google Scholar
  3. H-T Cho, T. Grandou, and H.M. Fried, Phys. Rev. D37 (1988) 946 and 960ADSGoogle Scholar
  4. H.M. Fried and H-T Cho, Phys. Rev. D41 (1990) 1489ADSGoogle Scholar
  5. H.M. Fried, in Proceedings of the IXth Moriond Workshop, Les Arcs, France (January 1989 ).Google Scholar
  6. 2.
    Pedagogical discussions of functional methods can now be found in many places, e.g. the text Quantum Field Theory, by C. Itzykson and J-B Zuber, (McGraw-Hill, 1980). To the author’s best knowledge, such material first appeared in the monographs Field Theory, by J. Rzewuski, (PWN Publishers, 1972), and Functional Methods and Models in Quantum Field Theory, by H.M. Fried ( MIT Press, 1972 ). Detailed descriptions of topics touched upon in the first Section of the present lecture may be found in the latter reference.Google Scholar
  7. 3.
    J. Schwinger, Phys. Rev. 82 (1951) 664.MathSciNetADSMATHCrossRefGoogle Scholar
  8. 4.
    E.S. Fradkin, Nucl. Phys. 76 (1966) 588.MathSciNetCrossRefGoogle Scholar
  9. 5.
    This is discussed in Functional Methods and Eikonal Models by H.M. Fried (Editions Frontières, 1990).Google Scholar
  10. 6.
    H. Bokemeyer and W. Koenig, in this ASI.Google Scholar
  11. 7.
    H.M. Fried, Phys. Rev. D42 (1990) 1857.Google Scholar
  12. 8.
    G. Soff and W. Greiner, this ASI.Google Scholar
  13. 9.
    M.B. Halpern, Phys. Rev. D19 (1979) 517.ADSGoogle Scholar
  14. 10.
    S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1888.ADSGoogle Scholar
  15. 11.
    I. Bialynicki-Birula, J. Math. Phys. 3 (1962) 1094.Google Scholar
  16. 12.
    D.J. Gross and A. Nevue, Phys. Rev. D10 (1974) 3235.ADSGoogle Scholar
  17. 13.
    See, for example, E. Eichten and R. Jackiw, Phys. Rev. D4 (1971) 439ADSCrossRefGoogle Scholar
  18. H.M. Fried and T.K. Gaisser, Phys. Rev. 179 (1969) 1491ADSCrossRefGoogle Scholar
  19. T.K. Gaisser, Phys. Rev. D2 (1970) 1337.Google Scholar
  20. 14.
    M. Ogilivie and J.E. Mandula, Phys. Letters B185 (1987) 127.ADSGoogle Scholar
  21. 15.
    M.E. Brachet and H.M. Fried, J. Math. Phys. 28 (1987) 15; H.M. Fried, J. Math. Phys. 28 (1987) 1275; 30 (1989) 1161.Google Scholar
  22. 16.
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147 (1979) 385, 448, 519.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • H. M. Fried
    • 1
  1. 1.Physics DepartmentBrown UniversityProvidenceUSA

Personalised recommendations