Advertisement

Non-Perturbative External Field Effects in QED

  • Janos Polonyi
Part of the NATO ASI Series book series (NSSB, volume 255)

Abstract

QED is the most thoroughly studied quantum field theory. The predictions up to the order O(e 8) perturbation expansion have been confronted with the experiments with success1 and the manner how ultraviolet divergences are handled is supported by the phenomenology related to the axial anomaly2. But QED cannot be reduced to a set of the Feynman diagrams, there are phenomena which are inherently non-perturbative in their nature. The well known examples are the bound state formation and the strong interactions at short distances. They can be handled by resumming an infinite subset of Feynman diagrams by methods such as the Bethe-Salpeter equation3 and the renormalization group4.

Keywords

Renormalization Group External Field Perturbation Expansion Renormalization Condition Fermi Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kinoshita and W. B. Lindquist, ‘Eight-order magnetic Moment of the Electron’, Cornell Preprint, CLNS 90–980.Google Scholar
  2. 2.
    S. Adler, Phys. Rev. 177 (1969). 2426; J. Bell and R. Jackiw, Nuovo Cimento 60A (1969) 47.CrossRefGoogle Scholar
  3. 3.
    H. A. Bethe and E. E. Salpeter, Phys. Rev. 82 (1951) 309; N. Nakanishi, Suppl. Progr. Theor. Phys. 43 (1969) 1.CrossRefGoogle Scholar
  4. 4.
    K. Wilson and J. Kogut, Phys. Rep. 12 (1974) 75; D. Amit, Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, 1984); J. Collins, Renormalization (Cambridge University Press, 1984)-.Google Scholar
  5. 5.
    V. B. Berestetsky, E. M. Lifshitz and L. P. Pitaevsky, Quantum Electrodynamics (Pergamon Press, 1959), eq. (82.7).Google Scholar
  6. 6.
    V. A. Miransky and P. I. Fomin, Soy. J. Part. Nucl. 16 (1985) 203; P. I. Fomin, V. P. Gusynin, V. A. Miransky and Yu. A. Sitenko, Riv. Nuovo Cimento 6 (1983) 1; W. A. Bardeen, C. N. Leung and S. T. Love, Phys. Rev. Lett. 56 (1986) 1230; C. N. Leung, S. T. Love and W. A. Bardeen, Nucl. Phys. B237 (1986) 649.Google Scholar
  7. 7.
    J. Kogut, E. Dagotto and A. Kocic, Phys. Rev. Lett. 60 (1988) 772; S. J. Hands, J. B. Kogut and E. Dagotto, Nucl. Phys. B333 (1990) 551; M. Göckeler et. al., Nucl. Phys. B334 (1990) 527; S. P. Booth, R. D. Kenway and B. J. Pendleton, Phys. Lett. 228B (1989) 115; E. Dagotto, A. Kocic and J. Kogut, Phys. Rev. Lett. 61 (1988) 2416: Nucl. Phys. B317 (1989) 253.Google Scholar
  8. 8.
    A. Guth, Phys. Rev. D21 1980) 2291; C. B. Lang, Nucl. Phys. B280 (1987) 225.CrossRefGoogle Scholar
  9. 9.
    J. Ambjorn, J. Greensite and C. Peterson, Nucl. Phys. B221 (1983) 381.ADSCrossRefGoogle Scholar
  10. 10.
    D. G. Caldi and A. Chodos, Phys. Rev. D36 (1987) 2876.ADSGoogle Scholar
  11. 11.
    J. Schweppe, et. al., Phys. Rev. Lett. 51 (1983) 2261; M. Clemente, et. al., Phys. Lett,. B137 (1954) 41; for a recent summary see H. Bokemeyer’s and W. Koenig’s talk at the School.Google Scholar
  12. 12.
    L. I. Schiff, H. Snyder and J. Weinberg, Phys. Rev. 57 (1940) 315; Y. B. Zeldovich and V. S. Popov, Soy. Phys. Usp. 14 (1972) 673; B. Müller, H. Peitz, J. Rafelski and W. Greiner, Phys. Rev. Lett. 28 (1972) 1235; B. Müller, J. Rafelski and W. Greiner, Z. Phys. 257 (1972) 62, 183; for a review see W. Greiner, B. Müller and J. Rafelski. Quantum Electrodynamics of Strong Fields (Springer, 1985 ).Google Scholar
  13. 13.
    M. C. Chu, S. Huang and J. Polonyi, “Non-Perturbative Effects in QED with Chemical Potential,” MIT preprint CTP#1920, submitted to Nuclear Physics.Google Scholar
  14. 14.
    J. Polonyi, in Quark-Gluon Plasma ( World Publisher, 1990 ), R. Hwa, ed.Google Scholar
  15. 15.
    M. C. Clin and J. Polonyi. unpublished.Google Scholar
  16. 16.
    J. Schwinger, Phys. Rey. 82 (1951) 664.MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    A. Chodos, K. Everding and D. Owen, QED with Chemical potential: I. Case of constant magnetic field.. Yale Preprint, April, 1990.Google Scholar
  18. 18.
    C. Itzykson and J. Zuber, Quantum Field Theory, McGraw-Hill Book Company, 1980.Google Scholar
  19. 19.
    A. A. Abrikosov. L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, (Dover, 1963); A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, (McGraw-Hill Book Company, 1971); B. A. Freedman and L. D. McLerran, Phys. Rev. D16 (1977) 1130.Google Scholar
  20. 20.
    T. D. Lee and M. Nauenberg, Phys. Rev. 133 (1963) B1549; T. D. Lee, Particle Physics and Introduction to Field Theory (Harwood Academic Publishers, 1985 ).Google Scholar
  21. 21.
    F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54.ADSMATHCrossRefGoogle Scholar
  22. 22.
    T. Kinoshita., J. Math. Phys. 3 (1962) 650;ADSMATHCrossRefGoogle Scholar
  23. 23.
    F. Bloch, Z. Phys. 57 (1920), 545.ADSGoogle Scholar
  24. 24.
    E. P. Wigner, Trans. Farad. Soc. 34 (1938) 678; W. J. Carr, Phys. Rev. 122 (1961) 1437.Google Scholar
  25. 25.
    P. W. Anderson, Phys. Rev. (1958) 1492.Google Scholar
  26. 26.
    L. Lellouch and J. Polonyi, in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Janos Polonyi
    • 1
  1. 1.Center for Theoretical Physics Laboratory for Nuclear Science and Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations