A New Phase of QED in Strong Coupling: A Guide for the Perplexed

  • Elbio Dagotto
Part of the NATO ASI Series book series (NSSB, volume 255)


Recently, Quantum Electrodynamics (QED) in strong coupling has attracted much attention. By numerical and analytical techniques it has been found that a phase transition takes place separating the “normal” (weak coupling) phase of QED from a. region where chiral symmetry is spontaneously broken in the massless limit (strong coupling). This critical point (second order phase transition) opens the possibility of a. nontrivial continuum limit for QED. In these lectures I will briefly review lattice gauge theories results in strongly coupled electrodynamics. The motivation is presented, lattice techniques and results are described and the physical interpretation of the numerical data is discussed. Many other topics like QED in three dimensions, QED in strong fields, different nonperturbative techniques, etc. are also briefly reviewed. Most, of this work has been done in collaboration with A. Kocić, J. Kogut and S. Hands.


Strong Coupling Chiral Symmetry Continuum Limit Order Phase Transition Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Feynman and A. Hibbs, “Quantum Mechanics and Path Integrals”, Mc Graw-Hill (1965).Google Scholar
  2. 2.
    For a review of this technique in particle physics see J. M. Drouffe and C. Itzykson, Phys. Rep. 38: 133 (1978).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    K. Wilson and J. Kogut, Phys. Rep. 12: 75 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    A. Moreo et al., Phys. Rev. B 41: 2313 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    E. Dagotto, NSF-ITP-90–70, invited review for Int. Journal of Mod. Physics B.Google Scholar
  6. 6.
    K. Wilson, Phys. Rev. D 14: 2455 (1974).Google Scholar
  7. 7.
    J. Kogut, Rev. Mod. Phys. 55: 775 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    E. Dagotto and J. Kogut, Nucl. Phys. B 295:123 (1988) and references therein.Google Scholar
  9. 9.
    P. I. Fomin, V. P. Gusynin, V. A. Miransky and Yu. Sitenko, Riv. Nuovo Cimento 6:1 (1983); V. A. Miransky, Nuovo Cimento 90A: 149 (1985).CrossRefGoogle Scholar
  10. 10.
    C. N. Leung, S. T. Love and W. A. Bardeen, Nucl. Phys. B273:649 (1986); C. N. Leung, S. T. Love and W. A. Bardeen, Nucl. Phys. B323: 493 (1989).Google Scholar
  11. 11.
    R. Holdom, Phys. Rev. Lett. 62: 997 (1989).CrossRefGoogle Scholar
  12. 12.
    K. Yamawaki, M. Bando and K. Matumoto, Phys. Rev. Lett. 56:1335 (1986); M. Bando, T. Morozumi, H. So and K. Yamawaki, Phys. Rev. Lett. 59: 389 (1987).Google Scholar
  13. 13.
    E. Dagotto and J. Kogut, Phys. Rev. Lett. 60:772 (1988); Phys. Rev. Lett. 61:2416 (1988); Nucl. Phys. B317:253 (1.989); Nucl. Phys. B317: 271 (1989).Google Scholar
  14. 14.
    N. Kawamoto and J. Smit, Nucl. Phys. B192: 100 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    A. M. Horowitz, Nucl. Phys. B (Proc. Suppl.) 9: 403 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    S. P. Booth, R. D. Kenway and B. J. Pendleton, Phys. Lett. B228: 115 (1989).Google Scholar
  17. 17.
    M. Gockeler. R. Horsley, h. Laermann, P. Rakow, G. Schierholz, R.J Sommer and U..1. Wiese, Nucl. Phys. B334: 527 (1990).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    E. Dagotto, A. Kocic and J. 13. Kogut, Nucl. Phys. B331: 500 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    E. Dagotto, S. Hands, A. Kocié and J. B. Kogut, in preparation.Google Scholar
  20. 20.
    S. Hands..J. B. Kogut and F. Dagotto, Nucl. Phys. B333: 551 (1990).ADSCrossRefGoogle Scholar
  21. 21.
    A. Kocié, S. Hands, J. B. Kogut and E. Dagotto, NSF-ITP-90–62, to appear in Nucl. Phys. B.Google Scholar
  22. 22.
    W. A. Bardeen, S. Love and V. A. Miransky, NSF-ITP-90–63.Google Scholar
  23. 23.
    K. I. Kondo, H. Mino and K. Yamawaki, Phys. Rev. D 39: 2430 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    E. Dagotto, A. Kocié and J. Kogut, Phys. Lett. B 232: 235 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    E. Dagotto, A. Kocié and J. Kogut, Phys. Rev. Lett. 62: 1083 (1989).ADSCrossRefGoogle Scholar
  26. 26.
    T. Appelquist, D. Nash and L. Wijewardhana, Phys. Rev. Lett. 60:2575 (1988) and references therein.Google Scholar
  27. 27.
    E. Dagotto, E. Fradkin and A. Moreo, Phys. Rev. B38:2926 (1988) and references therein.Google Scholar
  28. 28.
    T. Cowan et al., Phys. Rev. Lett. 56: 444 (1986).ADSCrossRefGoogle Scholar
  29. 29.
    D. Caldi and A. Chodos, Phys. Rev. D 36:2876 (1987); J. Ng and Y. Kikuchi, Phys. Rev. D 36: 2880 (1987).Google Scholar
  30. 30.
    E. Dagotto and H. W. Wyld, Phys. Lett. B 205: 73 (1988).ADSCrossRefGoogle Scholar
  31. 31.
    M. Baig, E. Dagotto, J. Kogut and A. Moreo, Phys. Lett. B242: 444 (1990).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Elbio Dagotto
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations