Production of Exotic Particles in Ultrarelativistic Heavy-Ion Collisions

  • M. Greiner
  • M. Vidović
  • J. Rau
  • C. Hofmann
  • G. Soff
Part of the NATO ASI Series book series (NSSB, volume 255)


Future pp-supercolliders in principle will also provide the opportunity to accelerate heavy ions. Ion energies up to 3.5 TeV/nucleon will be attainable at the Large Hadron Collider (LHC) at CERN. At the Superconducting Supercollider (SSC) in Texas heavy-ion energies up to 8 TeV/nucleon would be possible. The strong electromagnetic fields prevailing in these ultrarelativistic heavy-ion collisions can give rise to the production of exotic particles. The considered particles are for example heavy leptons, mesons intermediate vector bosons and even Higgs bosons or supersymmetric particles. They are effectively created via elementary two-photon processes. A simple estimate for the available photon energy yields
$$\hbar {{\omega }_{0}}=\frac{\hbar cr}{R}\simeq 200GeV$$
assuming a Lorentz contraction factory γ ≃ 8000 at the SSC and R ≃ 7 fm for a lead or uranium nucleus. Thus, centre of momentum energies of a few hundred GeV can be reached in collisions of two virtual photons contained in the Coulomb fields carried along by the colliding nuclei, which represents a necessary prerequisite to produce some of these exotic particles. In particular we evaluate in the following total cross sections [1,2] for the formation of Higgs bosons and supersymmetric particles via the method of equivalent photons [3–7].


Higgs Boson Large Hadron Collider Total Cross Section Production Cross Section Differential Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Grabiak, B. Müller, W. Greiner, G. Soff, P. Koch, J. Phys. G15, L25 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    J. Rau, B. Müller, W. Greiner, G. Soff, J. Phys. G16, 211 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    E. Fermi, Z. Physik 29, 315 (1924)ADSCrossRefGoogle Scholar
  4. 4.
    E.J. Williams, Proc. Roy. Soc. A139, 163 (1933)Google Scholar
  5. 5.
    C. Weizsäcker, Z. Physik 88, 612 (1934)ADSMATHCrossRefGoogle Scholar
  6. 6.
    V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rep. 15, 181 (1975)ADSCrossRefGoogle Scholar
  7. 7.
    C.A. Bertulani and G. Baur, Phys. Rep. 161, 299 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    G. Soff, J. Rau, M. Grabiak, B. Müller and W. Greiner, in “The Nuclear Equation of State”, Part B, eds.: W. Greiner and H. Stöcker, p. 579, ( Plenum Press, New York, 1989 )Google Scholar
  9. 9.
    M. Katuya, Phys. Lett. 124B, 421 (1983)Google Scholar
  10. 10.
    E. Eichten, I. Hinchliffe, K. Lane and C. Quigg, Rev. Mod. Phys. 56, 579 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    M.F. Sohnius, Phys. Rep. 128 (1985) 39MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    H.J.W. Müller-Kirsten and A. Wiedemann, Supersymmetry, ( World Scientific, Singapore, 1987 )MATHGoogle Scholar
  13. 13.
    J. Rau, Supersymmetrie, GSI Report 89–20 (1989)Google Scholar
  14. 14.
    S. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967)ADSMATHCrossRefGoogle Scholar
  15. 15.
    R. Haag, J.T. Lopuszansk and M.F. Sohnius, Nucl. Phys. B88, 257 (1975)ADSCrossRefGoogle Scholar
  16. 16.
    S. Dawson, E. Eichten, C. Quigg, Phys. Rev. D31, 1581 (1985)ADSGoogle Scholar
  17. 17.
    S.J. Brodsky, T. Kinoshita and H. Terazawa, Phys. Lett. 25, 972 (1970); Phys. Rev. D4, 1532 (1971)Google Scholar
  18. 18.
    R. Bates and J.N. Ng, Phys. Rev. D33, 657 (1986)ADSGoogle Scholar
  19. 19.
    D. Decamp et al. (ALEPH Collaboration), Phys. Lett. 246B, 306 (1990)Google Scholar
  20. 20.
    E. Papageorgiu, Phys. Rev. D40, 92 (1989)ADSGoogle Scholar
  21. 21.
    R.N. Cahn and J.D. Jackson, preprint LBL-28592, Berkeley (1990)Google Scholar
  22. 22.
    B. Müller and A.J. Schramm, preprint DUK-TH-90–7, Durham (1990)Google Scholar
  23. 23.
    see for example: T.D. Lee, Particle Physics and Introduction to Field Theory, (Harwood Academic Publishers, Chur, 1981 )Google Scholar
  24. 24.
    E. Papageorgiu, preprint RAL-90–037, Oxon (1990)Google Scholar
  25. 25.
    G. Baur and L.G. Ferreira Filho, preprint, Jülich (1990), subm. to Nucl. Phys.Google Scholar
  26. 26.
    J.S. Wu, C. Bottcher, M.R. Strayer and A.K. Kerman, preprint ORNL/CCJP/ 90/02, Oak Ridge (1990), subm. to Particle WorldGoogle Scholar
  27. 27.
    B. Müller and A.J. Schramm, preprint DUK-TH-90–8, Durham (1990)Google Scholar
  28. 28.
    M. Drees, J. Ellis, D. Zeppenfeld, Phys. Lett. 223B, 454 (1989)Google Scholar
  29. 29.
    G. Altarelli and M. Traseira, Phys. Lett. B245, 658 (1990)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • M. Greiner
    • 1
    • 2
  • M. Vidović
    • 3
  • J. Rau
    • 3
  • C. Hofmann
    • 3
  • G. Soff
    • 1
  1. 1.Gesellschaft für Schwerionenforschung (GSI)DarmstadtGermany
  2. 2.Institut für Theoretische PhysikJustus Liebig UniversitätGießenGermany
  3. 3.Institut für Theoretische PhysikJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations