Quantitative Measurement of Atherosclerosis by Angiography: Implications for Primary Prevention

  • Dieter M. Kramsch
  • Robert H. Selzer
  • David H. Blankenhorn
Part of the Nato ASI Series book series (NSSA, volume 219)

Abstract

There are two ways to test therapy for atherosclerosis in man: trials which measure cardiovascular death rates and trials that measure the rate of change in atherosclerotic lesions. Mortality-based trials require large study groups and relatively long periods of observation. Lesion tracking trials require fewer study subjects and shorter periods of observation, but are dependent on valid reliable assessment of lesion changes. To date, coronary angiography has been the major endpoint measure used in lesion trials. This review covers factors which influence the performance of angiography.

Keywords

Cholesterol Tuberculosis Luminal Cardiol Nifedipine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Sanders, E. L. Alderman, and D. C. Harrison, Coronary artery quantification using digital imaging processing techniques, in; “Computers in Cardiology,” K. L. Ripley and H. G. Ostrow, eds., IEEE Comp Soc, New York (1979).Google Scholar
  2. 2.
    J. R. Spears, Quantitation of anatomic coronary stenosis severity: limitations of accuracy, in: “State of the Art in Quantitative Coronary Arteriography,” J. H. C. Reiber and P. W. Serruys, eds., Martinus Nijhoff, Dordrecht, Netherlands (1986).Google Scholar
  3. 3.
    R. H. Selzer, A second look at quantitative coronary angiography: some unexpected problems, in: State of the Art in Quantitative Coronary Arteriography, J. H. C. Reiber and W. P. Serruys, eds., Martinus Nijhoff, Dordrecht, Netherlands (1986).Google Scholar
  4. 4.
    J. R. Spears and D. W. Crawford, A catheterization technique for reproduction of a human atherosclerotic lumen within the dog coronary artery in vivo, Cath Cardiovasc Diag 9:19 (1983).CrossRefGoogle Scholar
  5. 5.
    R. H. Selzer, C. Hagerty, S. P. Azen, M. Siebes, P. Lee, A. Shircore, D. H. Blankenborn, and the Cholesterol Lowering Atherosclerosis Study Investigators and Staff, Precision and reproducibility of quantitative coronary angiography with applications to controlled clinical trials, J Clin Invest 83:520 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    J. R. Spears, T. Sandor, A. V. Als, M. Malagold, J. E. Markis, W. Grossman, J. R. Serur, and S. Paulin, Computerized image analysis for quantitative measurement of vessel diameter from cineangiograms. Circulation 68:A53 (1983).CrossRefGoogle Scholar
  7. 7.
    J. H. C. Reiber, C. J. Kooijman, C. J. Slager, J. J. Gerbrands, J. C. H. Schuurbiers, A. den Boer, W. Wijns, P. W. Serruys, and P. G. Hugenholtz, Coronary artery dimensions from cineangiograms - methodology and validation of a computer-assisted analysis procedure, IEEE Transactions in Medical Imaging MI-3:131 (1984).CrossRefGoogle Scholar
  8. 8.
    D. W. Crawford, E. S. Beckenbach, D. H. Blankenborn, and S. H. Brooks, Grading of coronary atherosclerosis: Comparison of a modified lAP visual grading method and a new quantitative angiographic technique. Atherosclerosis 19:231 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Jaques, F. DiBianca, S. Pizer, F. Kohout, L. Lifshitz, and D. Delany, Quantitative coronary fluorography: Computer vs human estimation of vascular stenoses, Inves Radiol 20:45 (1985).CrossRefGoogle Scholar
  10. 10.
    M. Siebes, M. Gottwik, and M. Schlepper, Quanlitative and quantitative experimental studies on the evaluation of model coronary arteries from angiograms, in: “Computers in Cardiology”, IEEE Comp Soc, New York (1982).Google Scholar
  11. 11.
    T. Sandor, J. R. Spears, and S. Paulin, Densitometrie determination of changes in the dimensions of coronary arteries. Spie Digital Radiography 314:263 (1981).Google Scholar
  12. 12.
    H. Tomoike, H. Ootsubo, K. Sakai, Y. Kikuchi, and M. Nakamura, Continuous measurement of coronary artery diameter in situ, J Physiol 240:H73 (1981).Google Scholar
  13. 13.
    S. F. Vatner, A. Pasipoularides, and I. Mirsmy, Measurement of arterial pressure-dimension relationships in conscious animals, Ann Biomed Eng 12:521 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    A. C. Arntzenius, D. Kromhout, J. D. Barth, J. H. C. Reiber, A. V. G. Bruschke, B. Buis, C. M. van Gent, N. Kempen-Voogd, S. Strikwerda, and E. A. van der Velde, Diet, lipoproteins, and the progression of coronary atherosclerosis. The Leiden Intervention Trial, New Eng J Med 312:805 (1985).CrossRefGoogle Scholar
  15. 15.
    W. L. Cashin, S. H. Brooks, D. H. Blankenborn, R. H. Selzer, M. E. Sanmarco, and B. Benjauthrit, Computerized edge tracking and lesion measurement in coronary angiograms. Atherosclerosis 52:295 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Glagov, E. Weisenberg, C. K. Zarins, R. Stankunavicius, and G. J. Kolettis, Compensatory enlargement of human atherosclerotic coronary arteries, N Eng J Med 316:1371 (1987).CrossRefGoogle Scholar
  17. 17.
    B. H. Brown, E. Bolson, M. Frimer, and H. T. Dodge, Quantitative coronary arteriography. Estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 55:329 (1977).PubMedGoogle Scholar
  18. 18.
    K. L. Gould, Quantification of coronary artery stenosis in vivo, Circ Res 57:341, (1985).PubMedGoogle Scholar
  19. 19.
    R. L. Kirkeeide, B. Wuesten, and M. Gottwik, Computer assisted evaluation of angiographic findings, “Thrombose und Atherogenese,” K. Breddin, ed., Gerhard Witzstrock Verlag, Baden-Baden U981).Google Scholar
  20. 20.
    F. Booman, J. H. C. Reiber, J. J. Gerbrands, C. J. Slager, J. C. H. Schuurbiers, and G. T. Meester, Quantitative analysis of coronary occlusions from coronary cineangiograms, in: “Computers in Cardiology,” R. L. Ripley and H. G. Ostrow, eds., IEEE Comp Soc, New York (1979).Google Scholar
  21. 21.
    R. L. Kirkeeide, P. Fung, R. W. Smalling, and K. L. Gould, Automated evaluation of vessel diameter from arteriograms, in: “Computers in Cardiology,” IEEE Comp Soc, New York (1982).Google Scholar
  22. 22.
    D. C. Ledbetter, R. H. Selzer, R. M. Gordon, D. H. Blankenborn, and M. E. Sanmarco, Computer quantitation of coronary angiograms, Noninv Cardiovasc Meas 167:27 (1982).Google Scholar
  23. 23.
    J. R. Spears, T. Sandor, T. A. Als, M. Malagold, J. Markis, and S. Paulin, Accuracy of computer vs. visual measurement of vessel diameter from cine angiograms. Circulation 6A (supp IV):130 (1981).Google Scholar
  24. 24.
    D. H. Blankenborn, S. A. Nessim, R. L. Johnson, M. E. Sanmarco, S. P. Azen, and L. Casbin-Hemphill, Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts, JAMA 257–3233 (1987).Google Scholar
  25. 25.
    J. F. Brensike, R. I. Levy, S. F. Kelsey, E. R. Passamani, M. J. Richardson, I. K. Lob, N. J. Stone, R. F. Aldrich, J. W. Battaglini, D. J. Moriarty, M. R. Fisher, L. Friedman, W. Friedewald, K. M. Detre, and S. E. Epstein, Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: Results of the NHLBI Type II Coronary Intervention Study, Circulation 69:313 (198A).Google Scholar
  26. 26.
    R. G. Duffield, N. E. Miller, C. W. Jamieson, and B. Lewis, A controlled trial of plasma lipid reduction in peripheral atherosclerosis--an interim report, Br J Surg 69: Suppl:S3 (1982).CrossRefGoogle Scholar
  27. 27.
    B. G. Brown, J. T. Lin, S. M. Schaefer, C. A. Kaplan, H. T. Dodge, and J. J. Albers, Niacin or lovastatin, combined with colestipol, regress coronary atherosclerosis and prevent clinical events in men with elevated apolipoprotein B, Circulation 80:11–266 (1989).Google Scholar
  28. 28.
    D. M. Ornish, L. W. Scherwitz, S. E. Brown, J. H. Billings, W. T. Armstrong, T. A. Ports, R. L. Kirkeeide, and K. L. Gould, Adherence to lifestyle changes and reversal of coronary atherosclerosis. Circulation 80:11–57 (1989).Google Scholar
  29. 29.
    J. H. Chesebro, M. W. I. Webster, H. C. Smith, R. I. Frye, D. R. Holmes, G. S. Reeder, D. R. Bresnahan, and R. A. Nishimura, Antiplatelet therapy in coronary disease progression, reduced infarction and new lesion formation. Circulation 80:11–266 (1989).Google Scholar
  30. 30.
    P. R. Lichtlen, P. Hugenholtz, W. Rafflenbeaul, S. Jost, and H. Hecker, Retardation of the progression of coronary artery disease with Nifedipine. Results of INTACT, Circulation 80:11–382 (1989).Google Scholar
  31. 31.
    R. H. Deupree, R. I. Fields, C. A. McMahan, and J. P. Strong, Atherosclerotic lesions and coronary heart disease. Key relationships in necropsied cases. Lab Invest 28:252 (1973).PubMedGoogle Scholar
  32. 32.
    Atherosclerosis of the aorta and coronary arteries in five towns. Bull World Health Organization 53:A85 (1976).Google Scholar
  33. 33.
    J. W. Gofman, The quantitative nature of the relationship of coronary artery atherosclerosis and coronary heart disease risk, Cardiol Digest 4:28 (1969).Google Scholar
  34. 34.
    D. H. Blankenborn, R. L. Johnson, W. J. Mack, H. A. El Zein, and L. I. Vailas, The influence of diet on the appearance of new lesions in human coronary arteries, JAMA 263:1646 (1990).CrossRefGoogle Scholar
  35. 35.
    G. Schettler, Cardiovascular diseases during and after World War II: A comparison of the Federal Republic of Germany with other European countries, Prev Med 8:581 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Dieter M. Kramsch
    • 1
  • Robert H. Selzer
    • 2
  • David H. Blankenhorn
    • 1
  1. 1.University of Southern California School of MedicineLos AngelesUSA
  2. 2.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations