Membrane Physiologic Aspects of the Adjustment of Peripheral Vascular Tone

  • Günter Siegel
  • Kirsten Rückborn
  • Axel Walter
  • Frank Schnalke
  • Günter Stock
Part of the Nato ASI Series book series (NSSA, volume 219)

Abstract

A variety of local or systemic influences regulate peripheral organ perfusion, e.g. K+ ions, pH value, noradrenaline, prostacyclin, endothelial factors (1). With the multiplicity of effectors, and since several can be changed at the same time, the question of mechanism arises. To refer to Sherrington (2), it is important to find the “final common pathway” of their integration, even in the vascular smooth muscle cell. Electrophysiology opens up one approach to this problem. Nevertheless, biochemical processes in the cell membrane and in the cell interior have a part to play, particularly when the transmembrane passage of ions is modulated by the known intracellular second messengers like Ca2+, cAMP, cGMP, GTP-binding proteins, protein kinase C and ATP (3). This study deals mainly with the regulation of smooth muscle tone by the membrane potential with voltage-gated channels predominating.

Keywords

Permeability Titration Electrophoresis CaCl Prostaglandin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Siegel, Membranphysiologische Grundlagen der peripheren Gefäßregulation, Phvsiol. akt. 1:31 (1986).Google Scholar
  2. 2.
    C. S. Sherrington, Correlation of reflexes and the principle of the common path, Brit. Ass. Rep. 728 (1904).Google Scholar
  3. 3.
    N. S. Cook, The pharmacology of potassium channels and their therapeuticpotential, Trends Pharmacol. Sei. 9:21 (1988).CrossRefGoogle Scholar
  4. 4.
    G. Siegel and W. Schneider, Anions, cations, membrane potential, and relaxation, in: “Vasodilatation,” P. M. Vanhoutte and I. Leusen, eds. Raven Press, New York (1981).Google Scholar
  5. 5.
    G. Siegel, A. Walter, M. Bostanjoglo, A. W. H. Jans, R. Kinne, L. Piculell, and B. Lindman, Ion transport and cation-polyanion interactions in vascular biomembranes, J. Membrane Sei. 41:353 (1989).CrossRefGoogle Scholar
  6. 6.
    G. Siegel, M. Bostanjoglo, M. Thiel, A. Adler, A. Carl, G. Stock, and J. Grote, Membranphysiologische Mechanismen der Vasodilatation, in: “Frühveränderungen bei der Atherogenese,” E. Betz, ed., W. Zuckschwerdt Verlag, München (1987).Google Scholar
  7. 7.
    G. Siegel, A. Carl, A. Adler, and G. Stock, Effect of the prostacyclin analogue iloprost on Capermeability in the smooth muscle cells of the canine carotid artery, Eicosanoids 2:213 (1989).PubMedGoogle Scholar
  8. 8.
    G. Siegel and J. Grote, Po2-induced changes of membrane potential and tension in vascular smooth musculature, in: “Oxygen Sensing in Tissues,” H. Acker, ed., Springer-Verlag, Berlin (1988).Google Scholar
  9. 9.
    G. Siegel, F. Schnalke, G. Stock, and J. Grote, Prostacyclin, endothelium-derived relaxing factor and vasodilatation. Adv. Prostaglandin Thromboxane Leukotriene Res. 19:267 (1989).Google Scholar
  10. 10.
    G. Siegel, J. Grote, F. Schnalke, and K. Zimmer, The significance of the endothelium for hypoxic vasodilatation, Z. Kardiol. 78, Suppl. 6:124 (1989).PubMedGoogle Scholar
  11. 11.
    H. H. Ussing, The distinction by means of tracers between active transport and diffusion, Acta Physiol. Scand. 19:43 (1950).CrossRefGoogle Scholar
  12. 12.
    T. Teorell, Membrane electrophoresis in relation to bioelectrical polarization effects. Arch. Sci. Physiol. 3:205 (1949).Google Scholar
  13. 13.
    A. L. Hodgkin, A. F. Huxley, and B. Katz, Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116:424 (1952).Google Scholar
  14. 14.
    D. E. Goldman, Potential, impedance, and rectification in membranes, J. Gen. Physiol. 27:37 (1943).PubMedCrossRefGoogle Scholar
  15. 15.
    G. Siegel, The effect of external pH changes on Na2+ and K2+permeabilities in the smooth muscle fibre membrane of canine cerebral vessels, J. Physiol. (Lond.) 329:56P (1982).Google Scholar
  16. 16.
    G. Siegel, J. Mironneau, F. Schnalke, G. Schröder, B.-G. Schulz, and J. Grote, Vasodilatation evoked by K2+ channel opening, Prog. Clin. Biol. Res. 327:299 (1990).Google Scholar
  17. 17.
    G. Loirand, P. Pacaud, C. Mironneau, and J. Mironneau, Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture. Pflügers Arch. 407:566 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Siegel, A. Walter, A. W. H. Jans, and R. Kinne, Binding of mono- and divalent cations to different components of the extracellular matrix, Abhandl. Rhein.-Westf. Akad. Wissensch. 82:155 (1989).Google Scholar
  19. 19.
    H. Gustavsson, G. Siegel, B. Lindman, andL.-A. Fransson, Na-NMR studies of cation binding to multichain and single-chain glycosaminoglycan peptides, Biochim. Biophys. Acta 677:23 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    G. Siegel, A. Walter, and B. Lindman, Cation binding to anionic biopolymers of vascular connective tissue, J. Phys. (Paris) 45:C2- 595 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Günter Siegel
    • 1
  • Kirsten Rückborn
    • 2
  • Axel Walter
    • 1
  • Frank Schnalke
    • 1
  • Günter Stock
    • 3
  1. 1.Institute of Physiology, Biophysical Research GroupThe Free University of BerlinBerlin 33Germany
  2. 2.Institute of PhysiologyThe University of RostockRostock 1Germany
  3. 3.Cardiovascular PharmacologyResearch Laboratories of ScheringBerlin 65Germany

Personalised recommendations