Correlation of the Matrix-Degrading Activity of Macrophages with Changes in Smooth Muscle Cell Biology in Atherogenesis

  • Julie H. Campbell
  • Robyn R. Rennick
  • Gordon R. Campbell
Part of the Nato ASI Series book series (NSSA, volume 219)


Studies by bissell et al.1,2 have stressed the importance of the extracellular matrix surrounding each cell as an integral part of the cellular functional unit. The cell, dependent on its phenotypic state, produces a particular matrix which via interactions with membrane receptors and cytoskeletal components affects gene expression. This in turn, influences many morphological and functional properties of the cell. Studies with many cell systems including fibroblasts, smooth muscle cells (SMC), and endothelial and epithelial cells have shown that matrix components regulate functions such as adhesion, shape, migration, proliferation, biosynthetic and degradative processes, morphogenesis and differentiation3,4.


Smooth Muscle Cell Basal Lamina Heparan Sulphate Proteoglycan Heparan Sulphate Chain Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.J. Bisséll and M.H. Barcellos-Hoff, The influence of extracellular matrix on gene expression: Is structure the message? J. Cell Sei. 8(Suppl):327 (1987).Google Scholar
  2. 2.
    M.J. Bissell, H.G. Hall and G. Parry, How does the extracellular matrix direct gene expression? J. Theoret. Biol. 99:31 (1982).CrossRefGoogle Scholar
  3. 3.
    E.D. Hay, ed. Cell Biology of the extracellular matrix. Plenum Press, New York, London (1981).Google Scholar
  4. 4.
    G. Parry, B. Gullen, C.S. Kaetzel, R. Kramer and L. Moss, Regulation of differentiation and polarized secretion in mammary epithelial cells maintained in culture: Extracellular matrix and membrane polarity influences, J. Cell Biol. 105:2043 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Saunders and M. Bernfield, Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for interstitial matrix. J. Cell Biol. 106:423 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    J.H. Chamley-Campbell and G.R. Campbell, What controls smooth muscle phenotype? Atherosclerosis 40:347 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    J.H. Campbell and G.R. Campbell, Cellular interactions in the artery wall, in: “The Peripheral Circulation,” S. Hunyor, J. Ludbrook, J. Shaw, M. McGrath, ed., Elsevier, New York (1984).Google Scholar
  8. 8.
    L.M. Fritze, C.F. Reilly and R.D. Rosenberg, An antiproliferative heparan sulphate species produced by post-confluence smooth muscle cells, J. Cell Biol. 100:1041 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    E. Stadler, J.H. Campbell and G.R. Campbell, Do cultured vascular smooth muscle cells resemble those of the artery wall? If not, why not? J. Cardiovasc. Pharmacol. 14(Suppl.6):SI (1989).Google Scholar
  10. 10.
    L.A. Liotta, C.N. Rao and U.M. Wewer, Biochemical interactions of tumor cells with the basement membrane, Ann. Rev. Biochem. 55:1037 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Pöllänen, K. Hedman, L.S. Nielsen, K. Dano and A. Vaheri, Ultra-structural localization of plasma membrane-associated urokinase- type plasminogen activator at focal contacts, J. Cell Biol. 106: 87 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    G.R. Campbell and J.H. Campbell, Phenotypic modulation of smooth muscle cells in primary culture, in: “Vascular Smooth Muscle In Culture,” J.H. Campbell, G.R. Campbell, eds., CRC Press, Boca Raton (1987).Google Scholar
  13. 13.
    L. Jonasson, J. Holm, O. Skalli, G. Bondjers and G.K. Hansson, The human aterosclerotic plaque: Regional accumulations of T cells, macrophages and smooth muscle cells. Arteriosclerosis 6:131 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Fowler, H. Shio and N.J. Haley, Characterization of lipid-ladenaortic cells from cholesterol fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations. Lab. Invest. 41:372 (1979).PubMedGoogle Scholar
  15. 15.
    K. Shimokado, E.W. Raines, D.K. Madtes, T.B. Barnett, E.R. Bendittand R. Ross, A significant part of macrophage-derived growth factor consists of at least two forms of PDGF, Cell 43:277 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    M.B. Sporn and A.B. Roberts, Peptide growth factors and inflammation, tissue repair and cancer, J. Clin. Invest. 78:329 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    R.C. Page, P. Davies and A.C. Allison, The macrophage as a secretory cell. Int. Rev. Cytol. 52:119 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    R.E. Rennick, J.H. Campbell and G.R. Campbell, Vascular smooth muscle phenotype and growth behaviour can be influenced by macrophages in vitro. Atherosclerosis 71:35 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    J.H. Campbell and G.R. Campbell, Potential role of heparanase in atherosclerosis. News In Physiol. Sci. 4:9 (1989).Google Scholar
  20. 20.
    M.F. Prescott, C.K. McBride and M. Court, Development of intimallesions after leukocyte migration into the vascular wall. Am. J. Pathol. 135:835 (1989).PubMedGoogle Scholar
  21. 21.
    N. Savion, I. Vlodavsky and Z. Fuks, T-lymphocytes and macrophages interaction with cultured vascular endothelial cells: Attachment, invasion and subsequent degradation of the subendothelial extracellular matrix, J. Cell Physiol. 118:169 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Wasteson, B. Glimelius, C. Busch, B. Westermark, C.H. Heldin and B. Norling, Effect of a platelet endoglycosidase on cell surface associated heparan sulphate of human cultured endothelial and glial cells. Thrombosis Res. 11:309 (1977).CrossRefGoogle Scholar
  23. 23.
    Y. Matzner, M. Bar-Ner, J. Yahalom, R. Ishai-Michaeli, Z. Fuks and I. Vlodavsky, Degradation of heparan sulphate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role in invasion through basement membranes, J. Clin. Invest. 76:1306 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Nakajima, T. Irimura, D. Di Ferrante, N. Di Ferrante and G.L. Nicholson, Heparan sulphate degradation: relation to tumor invasion and metastatic properties of mouse B16 melanoma sublines. Science 220:611 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    I. Vlodavsky, Z. Fuks, M. Bar-Ner, Y. Ariav and V. Schirrmacher, Lymphoma cell-mediated degradation of sulphated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res. 43:2704 (1983).PubMedGoogle Scholar
  26. 26.
    A. Schmidt and E. Buddecke, Cell-associated proteoheparan sulfatefrom bovine arterial smooth muscle cells, Exp. Cell. Res. 178: 242 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    N.S. Fedarko and H.E. Conrad, A unique heparan sulfate in the nucleiof hepatocytes: structural changes with the growth state of the cells, J. Cell Biol. 102:587 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Julie H. Campbell
    • 1
  • Robyn R. Rennick
    • 1
    • 2
  • Gordon R. Campbell
    • 3
  1. 1.Baker Medical Research InstitutePrahranAustralia
  2. 2.University College LondonUK
  3. 3.Department of AnatomyUniversity of MelbourneAustralia

Personalised recommendations