Use of Monoclonal Antibodies to Fibrinogen, Fibrin and Fibrin(Ogen) Degradation Products in Atherosclerosis

  • Alessandra Bini
  • Bohdan J. Kudryk
Part of the Nato ASI Series book series (NSSA, volume 219)


Fibrinogen is a soluble protein which is converted into an insoluble gel, fibrin, by thrombin. Fibrin formation is involved in the physiology of hemostasis and wound repair and in a number of pathological processes such as thrombosis, atherosclerosis, tumors, renal disease and inflammation.


Acute Myocardial Infarction Atherosclerotic Plaque Fibrinogen Level Plasma Fibrinogen Cyanogen Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. L. Nossel, Relative proteolysis of the fibrinogen Bß thrombosis. Nature 291:165 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    B. Blombäck, B. Hessel, D. Hogg, and L. Therkildsen, A two-step fibrinogen-fibrin transition in blood coagulation. Nature 257:501 (1978).CrossRefGoogle Scholar
  3. 3.
    A. Bini, J. J. Jr. Fenoglio, J. Sobel, J. Owen, M. Fejgl, and K.L. Kaplan, Immunochemical characterization of fibrinogen, fibrin I, and fibrin II in human thrombi and atherosclerotic lesions. Blood 69:1038 (1987).PubMedGoogle Scholar
  4. 4.
    A. Bini, J. Sobel and K.L. Kaplan, Separation and characterization of fibrinogen-derived fragments in human arterial thrombi, in: “Fibrinogen and its Derivatives”, Muller-Berghaus G., U. Scheefers-Borchel, E. Selmayr and A. Henschen ed., Elsevier Science Publishers, Amsterdam (1986).Google Scholar
  5. 5.
    A. Bini, J.J. Jr. Fenoglio., R. Mesa-Tejada, B.J. Kudryk, and K.L. Kaplan, Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis. Arteriosclerosis 9:109 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    K. L. Kaplan, A. Bini, Thrombosis in atherogenesis. Crit. Rev. Oncol. Hematol. 9:305 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    R. Lorenzet, J.H. Sobel, A. Bini, and L.D. Witte, The release of mitogenic activity from endothelial cells is enhanced by low molecular weight fibrinogen-degradation products. Circulation 78:394 (1988).Google Scholar
  8. 8.
    G. Di Minno, and M. Mancini, Measuring plasma fibrinogen to predict stroke and myocardial infarction. Arteriosclerosis 10:1 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    W. B. Kannel, P.A. Wolf, W.P. Castelli, and R.B. D’Agostino, Fibrinogen and risk of cardiovascular disease. The Framingham study. J.A.M.A. 258:1183 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    T. W. Meade, R. Chakrabarti, A. Haines, W.R.S. North, Y. Sitirling, and S.G. Thompson, Haemostatic function and cardiovascular death: Early results of a prospective study. Lancet 1:1050 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    T. W. Meade, M.C. Brozovic, R.R. Chakrabarti, J.D. Imeson, S. Mellows, G.J. Miller, W.R.S. North, Y. Stirling, and S.G. Thompson, Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 11:533 (1986).CrossRefGoogle Scholar
  12. 12.
    L. Wilhelmsen, K. Svardsudd, K. Korsan-Bengtsen, B. Larsson, L. Welin, and G. Tibblin, Fibrinogen as a risk factor for stroke and myocardial infarction, N. Engl.J. Med.Google Scholar
  13. 13.
    N. Cristal, A. Slonim, I. Bar-Ilan, and A. Hart, Plasma fibrinogen levels and the clinical course of acute myocardial infarction, Angiology 34:693 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    N. T.J. O’Connor, S. Cederholm-Williams, S. Copper, and L. Cotter, Hypercoagulability and coronary artery disease, Br. Heart J. 52:614 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Hamsten, M. Blomback, B. Wiman, J. Svensson, A. Szamosi, U. de Faire, and L. Mettinger, Haemostatic function in myocardial infarction. Br. Heart J. 55:58 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    T. W. Meade, R. Chakrabarti, A.P. Haines, W.R.S. North, and Y. Stirling, Characteristics affecting fibrinolytic activity and plasma fibrinogen concentrations. Br.Med.J. 1:153 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Hamsten, U. De Faire, L. Iselius, and M. Blomback, Genetic and cultural inheritance of plasma fibrinogen concentration. Lancet 11:988 (1987).CrossRefGoogle Scholar
  18. 18.
    S. E. Humphries, M. Cook, M. Dubowtiz, Y. Stirling, and Meade TW, Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentration. Lancet 1:1452 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    I. K. Murray, K. Buetow, D. Chung, and A. Aschbacher, Linkage disequilibrium of RFLP’s at the beta fibrinogen (FGB) and gamma fibrinogen (FGG) loci on chromosome 4. Cytogenet, Cell Genet. 40:707 (1985).CrossRefGoogle Scholar
  20. 20.
    R. L. Ridolfi, and B.M. Hutchins, The relationship between coronary artery lesions and myocardial infarcts: ulceration of atherosclerotic plaques precipitating coronary thrombosis. Am. Heart J. 93:468 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    M. J. Davies, and A. Thomas, Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N. Engl. J. Med. 310:1137 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    J. E. Saffitz, R.C. Fredrickson, and W.C. Roberts, Relation of size of transmural acute myocardial infarction impact to mode of death, interval between infarction and death and frequency of coronary arterial thrombus. Am. J. Cardiol. 57:1249 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    M. J. Davies, Thrombosis in acute myocardial infarction and sudden death, Cardiovasc. Clin. 18:151 (1987).Google Scholar
  24. 24.
    M. A. De Wood, J. Spores, R. Notske, L.T. Mouser, R. Burroughs, M.S. Golden, and H.T. Lang, Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction, N. Engl. J. Med.303:897 (1980).CrossRefGoogle Scholar
  25. 25.
    J. A. Ambrose, S.L. Winters, R.R. Arora, J.I. Haft, J. Goldstein, K.P. Rentrop, R. Gorlin, and V. Fuster, Coronary angiographic morphology in myocardial infarction: a link between the pathogenesis of unstable angina and myocardial infarction, J. Am. Coll. Cardiol. 6:1233 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    R. J. Frink, P.A. Rooney, J.O. Trowbridge, and J.P. Rose, Coronary thrombosis and platelet:fibrin microemboli in death associated with acute myocardial infarction, Br. Heart J. 59:196 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    E. Falk, Unstable angina pectoris with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion, Circulation.71:699 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    M. J. Davies, and A.C. Thomas: Plaque fissuring-the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina, Br.Heart J. 53:363 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    V. Fuster, and J.H. Chesebro, Mechanisms of unstable angina, N. Engl. J. Med. 315:1023 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    A. H. Kragel, S.G. Reddy, J.T. Wittes, and W.C. Roberts, Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarcation and in sudden coronary death. Circulation 80:1747 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    E. B. Smith, K.M. Alexander, and I.B. Massie, Insoluble “fibrin”, soluble fibrinogen and low density lipoprotein. Atherosclerosis 23:19 (1976).PubMedCrossRefGoogle Scholar
  32. 32.
    E. B. Smith, E.M. Staples, H.S. Dietz, and R.H. Smith, Role of endothelium in sequestration of lipoprotein and fibrinogen in aortic lesions, thrombi, and graft pseudo-intimas. Lancet 1:8812 (1979).Google Scholar
  33. 33.
    E. B. Smith, and E.M. Staples, Intimal and medial plasma protein concentrations and endothelial function. Atherosclerosis 41:295 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    E. B. Smith, G.A. Keen, A. Grant, and C. Stirk, Fate of fibrinogen in human arterial intima. Arteriosclerosis 10:263 (1990).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Sadoshima, and E. Tanaka, Fibrinogen and low density lipoprotein in the development of cerebral atherosclerosis. Atherosclerosis 34:93 (1979).PubMedCrossRefGoogle Scholar
  36. 36.
    Z. D. Grossman, S.F. Rosebrough, J.G. McAfee, G. Subramanian, C.A. Ritter-Hrncirik, L.S. Witanowski, and G. Tillapaugh-Fay, Imaging fresh venous thrombi in the dog with 1–131 and In- Ill labeled fibrin-specific monoclonal antibody and its F(ab’)2 and Fab fragments. Radiographics 7:913 (1987).PubMedGoogle Scholar
  37. 37.
    S. F. Rosebrough, Z.D. Grossman, J.G. McAfee, B.J. Kudryk, G. Subramanian, C.A. Ritter-Hrncirik, L.S. Witanowski, G. Tillapaugh-Fay, Urrutia, and C. Zapf-Longo, Thrombus imaging with indium-Ill and iodine-131-labeled fibrin-specific monoclonal antibody and its F(ab’)2 and Fab fragments, J. Nucl. Med. 29:1212 (1988).PubMedGoogle Scholar
  38. 38.
    B. J. Kudryk, A. Bini, S.F. Rosebrough, and T.F. Schaible, Fibrinogen-fibrin: preparation and use of monoclonal antibodies as diagnostics, in:Biotechnology of Blood, Stoneham, MA, (ed): Butterworths (1990, in press).Google Scholar
  39. 39.
    K. Y. Hui, E. Haber, and G.R. Matsueda, Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen. Science 222:1129 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    M. Jung, K. Kletter, R. Dudczak, R. Koppensteiner, E. Minar, and P. Kahls, A. Stumpflen, P. Pokieser, and H. Ehringer, Deep vein thrombosis: Scintigraphic diagnosis with In-111- labeled monoclonal antifibrin antibodies. Radiology 173:469 (1989).PubMedGoogle Scholar
  41. 41.
    L. Lusiani, P. Zanco, A. Visona, G. Breggion, A. Pagnan, and G. Ferlin, Immunoscintigraphic detection of venous thrombosis of the lower extremities by means of human antifibrin monoclonal antibodies labeled with 111In, Angiology 40:671 (1989).PubMedCrossRefGoogle Scholar
  42. 42.
    A. Alavi, H. Palevsky, N. Gupta, M.A. Kelley, A.D. Jatlow, J.F. Schaible, J. Brown, and H.J. Berger, Radiolabelled antifibrin antibody in the detection of venous thrombosis: preliminary results, Radiology 175:79 (1990).PubMedGoogle Scholar
  43. 43.
    A. Nordoy, and S.H. Goodnight, Dietary lipids and thrombosis. Relationships to atherosclerosis. Arteriosclerosis 10:149 (1990).PubMedCrossRefGoogle Scholar
  44. 44.
    M. L. Burr, J.F. Gilbert, R.M. Holloday, P.C. Elwood, A.M. Fehily, S. Rogers, P.M. Sweetnam, and N.M. Deadman, Effects of changes in fat, fish, and fibre intakes in death and myocardial infarction/diet and reinfarction trial (DART), Lancet 11:757 (1989).CrossRefGoogle Scholar
  45. 45.
    J. C. La Rosa, D. Hunninghake, D. Bush, M.H. Criqui, G.S. Getz, A.M. Gotto, S.M. Grundy, L. Rakita, R.M. Robertson, M.L. Weisfeldt, and J.I. Gleeman, Task Force on Cholesterol Issues, American Heart Association: The cholesterol facts. A summary of the evidence relating dietary fats, serum cholesterol, and coronary heart disease. Circulation 81:1721 (1990).CrossRefGoogle Scholar
  46. 46.
    E. Ernst, T. Weihmayr, V. Schmid, M. Baumann, and A. Matrai, Cardiovascular risk factors and hemorheology. Physical fitness, stress and obesity, Atherosclerosis 59:263 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Alessandra Bini
    • 1
    • 2
  • Bohdan J. Kudryk
    • 3
  1. 1.Consorzio Mario Negri SudIstituto di Ricerche Farmacologiche Mario NegriS. Maria ImbaroItaly
  2. 2.Department of PathologyCollege of Physicians and Surgeons of Columbia UniversityNew YorkUSA
  3. 3.Lindsley F. Kimball Research InstituteThe New York Blood CenterNew YorkUSA

Personalised recommendations