What have We Learned about the Atherosclerotic Plaque Using Laser Radiation?

  • Enrico Barbieri
Part of the Nato ASI Series book series (NSSA, volume 219)


The development of percutaneous transluminal angioplasty has been a milestone in the treatment of peripheral vascular disease (1). Nevertheless the procedure has some major limitations: 1) Inability to cross severe occlusion; 2) a 25%–50% restenosis rate at two years (2); 3) scant success in diffuse atherosclerotic arteries. The ability to ablate atherosclerotic plaques without damaging the vessel wall was the “dream” of the first pioneers who first used laser radiation in the cardiovascular field. Extensive experimental and human clinical studies have been performed in the last ten years to evaluate the effect of laser radiation on the plaque. As a consequence our knowledge of the optical, thermal and several other properties of the normal and diseased vessel wall has increased greatly. Some of these new developments are considered in order to understand better the behavior of atherosclerotic plaque during laser application and to begin to evaluate the possible uses of this powerful tool to alter and to measure components of the artery wall lesions using exogenous fluorescence.


Atherosclerotic Plaque Excimer Laser Calcify Plaque Laser Angioplasty Interventional Radiological Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Gruntzig, D.A. Kumpe, Technique of percutaneous transluminal angioplasty with the Gruntzig balloon catheter, AJR 132:574 (1979).Google Scholar
  2. 2.
    D. M. Widlus, F. A. Osterman, Evaluation and percutaneous management of atherosclerotic peripheral vascular disease, JAMA 261:3148 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    A. J. Welch, J. W. Valvano, J. A. Pearce, L. J. Hayes, M. Motamedi, Effect of laser radiation on tissue during laser angioplasty. Lasers Surg Med 5:251 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    A. J. Welch, The thermal response of laser irradiated tissue, J Quantum Elec QE 20:1471 (1984).CrossRefGoogle Scholar
  5. 5.
    J. W. Valvano, L. Hayes, A. J. Welch, S. Bajekal, D. Colvin, H. Hussein, Thermal properties of plaque and vessel wall, Lasers Surg Med 3:318 (1984).Google Scholar
  6. 6.
    T. J. Bowker, P. Edwards, T. A. Hall, M. Regel, S. G. Bown, K. M. Fox, P. Poole Wilson, A. F. Rickards, Optical transmission of normal and atheromatous arterial wall: a spectral analysis, Cardiovasc Res 20: 393 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    M. R. Prince, T. F. Deutsch, M. M. Mathews Roth, R. Margolis, J. A. Parrish, A. R. Oseroff, Preferential light absorption in atheromas in vitro, J Clin Invest 78:295 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    M. R. Prince, G. M. La Muraglia, E. F. MacNichol, Increased preferential absorption in human atherosclerotic plaque with oral beta carotene. Circulation 78:338 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    I. P. Kaminow, J. M. Wiesenfeld, D. Choy: Argon laser disintegration of thrombus and atherosclerotic plaque, Appl. Optics 23:1301 (1984).CrossRefGoogle Scholar
  10. 10.
    F. M. La Muraglia, S. Murray, R. R. Anderson, M. R. Prince, Effect of pulse duration on selective ablation of atherosclerotic plaque by 480 - to 490 nanometer laser radiation. Lasers Surg Med 8:18 (1988).CrossRefGoogle Scholar
  11. 11.
    C. C. Hoyt, R. R. Richards Kortum, B. Costello, B. A. Sacks, C. Kitrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, Remote biomedical spectroscopic imaging of human artery wall. Lasers Surg Med 8:1 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    M. B. Leon, Y. Almagor, A. L. Bartorelli, L. G. Prevosti, P. S. Teirstein, R. Chang, D. L. Miller, P.D. Smith, R. F. Bonner, Fluorescence guided laser assisted balloon angioplasty in patients with femoropopliteal occlusions. Circulation 81:143 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    J. R. Spears, J. Serur, D. Shropshir, S. Paulin, Fluorescence of experimental atheromathous plaques with hematoporphyrin derivate, J Clin Invest 78:395 (1986).Google Scholar
  14. 14.
    D. Murphy-Chutorian, J. Kosek, W. Mok, S. Quay, W. Huestis, J. Mehigan, D. Profitt, R. Ginsburg, Selective absorption of ultraviolet laser energy by human atherosclerotic plaque treated with tetracycline, Am J Cardiol 55:1293 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    G. M. Vincent, G. S. Abela and E. Barbieri, Photosensitizer -enhanced laser angioplasty. In Lasers in cardiovascular medicine and surgery: fundamentals and techniques, G S Abela ed., Kluwer Academic Press, Boston (1990).Google Scholar
  16. 16.
    M Sartori, R. Sauerbrey, S. Kubodera, F. K. Tittel, R. Roberts, P.D. Henry, Autofluorescence maps of atherosclerotic human arteries. A new technique in medical imaging, J Quantum Elec QE 23:1794 (1987).CrossRefGoogle Scholar
  17. 17.
    J. S. Nelson JS, L. Yow, L. H. Liaw, L. Macleay, R. B. Zavar, A. Orenstein, W. H. Wright, J. J. Andrews, M. W. Berns, Ablation of bone and methracrylate by a prototype mid - infrared Erbium: Yag laser. Lasers Surg Med 8:494 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    R. C. Nuss, R. L. Fabian, R. Sarkar, C. A. Puliafito, Infrared laser bone ablation. Lasers Surg Med 8:381 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    G. S. Abela, J. M. Seeger, E. Barbieri, D. Franzini, A. Fenech, C. J. Pepine, C. R. Conti, Laser angioplasty with angioscopic guidance in humans, J Am Coll Cardiol 8:184 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    T. A. Sanborn, D. C. Cumberland, A. J. Greenfield, C. L. Welsh, J. K. Guben, Percutaneous laser thermal angioplasty: initial results and 1 - year follow up in 129 femoropopliteal lesions. Radiology 168:21 (1988).Google Scholar
  21. 21.
    A. Perbellini, E. Barbieri G. Taddei, A. Scuro, G. Mazzilli, S. Imperio, M. Lino, G. Destro, L. Lucchese, Recanalization of occluded peripheral arteries by “Hot tip” laser system. Vase Surg 23:371 (1989).CrossRefGoogle Scholar
  22. 22.
    E. Barbieri, G S. Abela, A. I. Khoury, C R. Conti, Temperature characteristics of laser thermal probes in the coronary circulation of dogs. Circulation 76:IV-47 (1987).Google Scholar
  23. 23.
    E. Barbieri, A. Perbellini, A. Scuro, G Taddei, G. Mansueto, G. Bau, P. Ghini, G. Destro, Excimer laser in the treatment of peripheral artery disease: acute and short term results, 37th Meeting American College of Angiology 20, Atlanta (1990).Google Scholar
  24. 24.
    G. Biamino, G. Stefan, H. Böttcher, U. Flesch, U. Kar, K. Dorschel, P. Skarabis, M. Gross, H. Witt, G. Muller, Excimer laser revascularization: clinical results. Cardiovascular and Interventional Radiological Society of Europe, Annual Meeting 182, Brussel (1990).Google Scholar
  25. 25.
    D. Rothbaum, F. Litvach, J. Margolis, “Stand alone” percutaneous excimer laser coronary angioplasty, J Am Coll Cardiol 15:26A (1990).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Enrico Barbieri
    • 1
  1. 1.Institute of CardiologyUniversity of VeronaVeronaItaly

Personalised recommendations