Advertisement

An Experimental Assessment of Continuum Models of Dendritic Growth

  • J. P. Gollub
Part of the NATO ASI Series book series (NSSB, volume 284)

Abstract

Experimental evidence pertinent to theories of needle crystals (dendrites) based on continuum models is reviewed and assessed critically. Some predictions, such as the dependence of the growth state on crystalline anisotropy, have not been convincingly demonstrated, and the models may not be appropriate in all cases, for example when kinetic effects are important. On the other hand, the continuum models provide an internally consistent explanation for many of the observations, including some related to sidebranching.

Keywords

Continuum Model Dendritic Growth Kinetic Effect Liquid Crystal Phasis Needle Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.A. Kessler, J. Koplik, and H. Levine, Adv. Phys. 37, 255 (1988).ADSCrossRefGoogle Scholar
  2. [2]
    J.S. Langer, in Chance and Matter, ed. by J. Souletie, J. Vannimenus, and R. Stora (Elsevier, New York, 1987), p. 629; and Science 243, 1150 (1989).Google Scholar
  3. [3]
    P. Pelcé, Dynamics of Curved Fronts (Academic Press, New York, 1988).MATHGoogle Scholar
  4. [4]
    For a general review from a materials science perspective see W. Kurz and R. Trivedi, Acta Metall. Mater. 38, 1 (1990).CrossRefGoogle Scholar
  5. [5]
    A. Dougherty, P.D. Kaplan, and J.P. Gollub, Phys. Rev. Lett. 58, 1652 (1987).ADSCrossRefGoogle Scholar
  6. [6]
    S.-C. Huang and M.E. Glicksman, Acta Metall. 29, 701 and 717 (1981).Google Scholar
  7. [7]
    Y. Sawada, A. Dougherty, and J.P. Gollub, Phys. Rev. Lett. 56, 1260 (1986).ADSCrossRefGoogle Scholar
  8. [8]
    F. Argoul, A. Arneodo, and G. Grasseau, Phys. Rev. Lett. 61, 2558 (1988).ADSCrossRefGoogle Scholar
  9. [9]
    P. Oswald, J. Phys. France 49, 1083 (1988).CrossRefGoogle Scholar
  10. [10]
    W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 34, 323 (1963) and 35, 444 (1964).Google Scholar
  11. [11]
    H. Chou and H.Z. Cummins, Phys. Rev. Lett. 61, 173 (1988).ADSCrossRefGoogle Scholar
  12. [12]
    V. Pines, M. Zlatkowski, and A. Chait, Phys. Rev. A 42, 6129 and 6137 (1990).Google Scholar
  13. [13]
    D.A. Kessler and H. Levine, Phys. Rev. A 33, 3352 (1986).ADSCrossRefGoogle Scholar
  14. [14]
    A. Barbieri and J.S. Langer, Phys. Rev. A 39, 5314 (1989);ADSCrossRefGoogle Scholar
  15. [14a]
    A. Barbieri and J.S. Langer, J.S. Langer, Phys. Rev. A 36, 3350 (1987).ADSCrossRefGoogle Scholar
  16. [15]
    Y. Saito, G. Goldbeck-Wood, and H. Müller-Krumbhaar, Phys. Rev. Lett. 58, 1541 (1987)ADSCrossRefGoogle Scholar
  17. [15a]
    Y. Saito, G. Goldbeck-Wood, and H. Müller-Krumbhaar, Phys. Rev. A 38, 2148 (1988).ADSCrossRefGoogle Scholar
  18. [16]
    D. Kessler, in Proceedings of the Conference on Asymptotics Beyond All Orders, ed. by S. Tanveer (Plenum, 1991), to appear. A different approach to the effect of non-axisymmetry on state selection has been given by Y. Miata, S.H. Tirmizi, and M.E. Glicksman, “Dendritic growth with interfacial energy anisotropy,” J. Cryst. Growth (1991), to appear.Google Scholar
  19. [17]
    M.E. Glicksman and N.B. Singh, J. Cryst. Growth 98, 277 (1989).ADSCrossRefGoogle Scholar
  20. [18]
    J.H. Bilgram, M. Firmann, and E. Hürlimann, J. Cryst. Growth 96, 175 (1989).ADSCrossRefGoogle Scholar
  21. [19]
    A. Doughertv and J.P. Gollub, Phys. Rev. A 38, 3043 (1988).ADSCrossRefGoogle Scholar
  22. [20]
    A. Dougherty, Surface tension anisotropy and the dendritic growth of pivalic acid, J. Cryst. Growth (1991), in press.Google Scholar
  23. [21]
    J. Maurer, B. Perrin, and P.Tabeling, Three dimensional structure of href="http://nilj.br/">NH4Br dendrites growing out of a gel (1990), preprint.Google Scholar
  24. [22]
    M. Ben Amar, private communication.Google Scholar
  25. [23]
    X.W. Qian and H.Z. Cummins, Phys. Rev. Lett. 64, 3038 (1990).ADSCrossRefGoogle Scholar
  26. [24]
    P. Bouissou, A. Chiffaudel, B. Perm, and P. Tabeling, Europhys. Lett. 13, 89 (1990).ADSCrossRefGoogle Scholar
  27. [25]
    S.-K. Chan, H.-H. Reimer, and M. Kahlweit, J. Cryst. Growth 32, 303 (1976).ADSCrossRefGoogle Scholar
  28. [26]
    E. Brener and H. Levine, Phys. Rev. A 43, 883 (1991).ADSCrossRefGoogle Scholar
  29. [27]
    J. Maurer, P. Bouissou, B. Perrin, and P. Tabeling, Europhys. Lett. 8, 67 (1988).ADSCrossRefGoogle Scholar
  30. [28]
    M. Ben Amar and Y. Pomeau, Europhys. Lett. 6, 609 (1988).ADSCrossRefGoogle Scholar
  31. [29]
    E. Raz, S.G. Lipson, and E. Polturak, Phys. Rev. A 40, 1088 (1989).ADSCrossRefGoogle Scholar
  32. [30]
    E. Raz, S.G. Lipson, and E. Ben-Jacob, Meta-ordering observed during dendritic growth of ammonium chloride crystals in thin layers (1990), preprint.Google Scholar
  33. [31]
    R.-F. Xiao, J.I.D. Alexander, and F. Rosenberger, Phys. Rev. A 38, 2447 (1988);ADSCrossRefGoogle Scholar
  34. [31a]
    R.-F. Xiao, J.I.D. Alexander, and F. Rosenberger, J. Cryst. Growth 100, 313 (1990).ADSCrossRefGoogle Scholar
  35. [32]
    R. Pieters and J.S. Langer, Phys. Rev. Lett. 56, 1948 (1986);ADSCrossRefGoogle Scholar
  36. [32a]
    M. Barber, A. Barbieri, and J.S. Langer, Phys. Rev. A 36, 3340 (1987);ADSCrossRefGoogle Scholar
  37. [32b]
    D.A. Kessler and H. Levine, Europhys. Lett. 4, 215 (1987);ADSCrossRefGoogle Scholar
  38. [32c]
    B. Caroli, C. Caroli, and B. Roulet, J. Phys. Paris 48, 1423 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. P. Gollub
    • 1
    • 2
  1. 1.Physics Dept.Haverford CollegeHaverfordUSA
  2. 2.Physics Dept.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations