The Geometric Model of Crystal Growth — An Overview

  • Harvey Segur
Part of the NATO ASI Series book series (NSSB, volume 284)


The geometric model is a phenomenological model of growing dendritic crystals. It is too simple to be accurate physically, but it has played an important role in identifying some of the delicate mathematical issues in the problem. The purpose of this overview is to explain: (a) what the model is; (b) how to interpret its results physically; and (c) its significance in a workshop on Asymptotics Beyond All Orders.


Surface Tension Geometric Model Needle Crystal Real Crystal Boundary Layer Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amick, C.J., and McLeod, B.J., 1990, Arch. Rat, Mech. Anal., 109, 139–171MathSciNetMATHCrossRefGoogle Scholar
  2. Ben-Jacob, E., Goldenfeld, N., Langer, J.S., and Schön, G., 1983, Phys. Rev. Lett., 51, 1930–1932ADSCrossRefGoogle Scholar
  3. Ben-Jacob, E., Goldenfeld, N., Langer, J.S., and Schön, G., 1984, Phys. Rev., 29A. pp. 330–340ADSGoogle Scholar
  4. R. Brower, D. Kessler, J. Koplik, & H. Levine, Phys. Rev. Lett., 51, pp. 1111–1114, 1983ADSCrossRefGoogle Scholar
  5. R. Brower, D. Kessler, J. Koplik, & H. Levine, Phys. Rev., 29A, pp. 1335–1342, 1984ADSGoogle Scholar
  6. R.F. Dashen, D.A. Kessler, H. Levine & R. Savit, Physica, 21D, pp. 371–380, 1986MathSciNetADSGoogle Scholar
  7. J.P. Gollub, “Experimental evidence for (and against) microscopic solvability”, in these Proceedings, 1991;Google Scholar
  8. see also: A. Dougherty, P.D. Kaplan, & J.P. Gollub, Phys Rev. Lett., 58, pp. 1652–1655, 1987ADSCrossRefGoogle Scholar
  9. J.M. Hammersley & G. Mazzarino, IMA J. of App. Math., 42, pp.43–75, 1989MathSciNetMATHCrossRefGoogle Scholar
  10. V. Hakim, “Asymptotics beyond all orders from the asymptotic expansion: the Borel summation method”, these Proceedings, 1991Google Scholar
  11. G. Horvay & J.W. Cahn, Acta Metall., 9, pp. 965–705, 1961CrossRefGoogle Scholar
  12. S.C. Huang & M.E. Glicksman, Acta Metall., 29, pp. 701–715, 1981CrossRefGoogle Scholar
  13. G.P. Ivantsov, Doklady Akad. Nauk (Russian), 58, pp. 567–569, 1947Google Scholar
  14. M.D. Kruskal & H. Segur, Stud. App. Math., to appear, 1991Google Scholar
  15. M.D. Kruskal & H. Segur, ARAP Tech. Memo (unpublished), 1985Google Scholar
  16. J.S. Langer, Phys. Rev A, 33, pp. 435–441, 1986MathSciNetADSCrossRefGoogle Scholar
  17. W.C. Troy, Q. Appl. Math., 48, pp. 209–216, 1990MathSciNetMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Harvey Segur
    • 1
  1. 1.Program in Applied MathematicsUniversity of ColoradoBoulderUSA

Personalised recommendations