Advertisement

Exponential Asymptotics for Partial Differential Equations

  • R. E. Meyer
Part of the NATO ASI Series book series (NSSB, volume 284)

Abstract

The principles are discussed by which asymptotics beyond all orders can be carried to genuine partial differential equations for which the variables cannot be separated. Access to solutions then depends on the canonical equations of the Hamilto-nian operators, and their phase-space trajectories involve complex geometrical optics and branching. To handle the resulting Stokes phenomena reliably in several dimensions requires a connection method resolving them strictly locally at the branch points of individual trajectories. For linear problems, at least, solution approximations can then be formulated which are concrete and exponentially reliable, even if grossly nonuniform, and can be used to predict transcendentally small functionals of the operator that can be observed directly. The general theory is illustrated by examples of spectral degeneracy.

Keywords

Branch Point Geometrical Optic Periodic Potential Invariant Torus Canonical Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Littlewood, Lorentz’s pendulum problem, Ann. Physics 21:233 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    R. E. Meyer, Adiabatic variation, Part I, Exponential property for the simple oscillator, J. Appl. Math. Phys. (ZAMP) 24:293 (1973);MATHCrossRefGoogle Scholar
  3. 2a.
    R. E. Meyer, Part II, Action change for the simple oscillator, J. Appl. Math. Phys. (ZAMP): 24:517(1973);MATHCrossRefGoogle Scholar
  4. 3.
    W. Wasow, Adiabatic invariance of a simple oscillator, SIAM, J. Math. Anal. 4:78(1973).Google Scholar
  5. 4.
    R. E. Meyer, Adiabatic variation, Part V, Nonlinear near-periodic oscillator, J. Appl. Math. Phys. (ZAMP) 27:181 (1976).ADSCrossRefGoogle Scholar
  6. 5.
    R. E. Meyer, Gradual reflection of short waves, SIAM J. Appl. Math. 29:481 (1975).MathSciNetMATHCrossRefGoogle Scholar
  7. 6.
    C. Lozano and R. E. Meyer, Leakage and response of waves trapped by round islands, Phys. Fluids 19:1075 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 7.
    R. E. Meyer, Quasiresonance of long life, J. Math. Phys. 27:238 (1986).MathSciNetADSCrossRefGoogle Scholar
  9. 8.
    R. E. Meyer, On exponential asymptotics for nonseparable wave equations, Part II, EBK quantization, SIAM J. Appl. Math., to appear.Google Scholar
  10. 9.
    R. T. Skodje, F. Borondo and W. P. Reinhardt, The semiclassical quantization of nonseparable systems using the method of adiabatic switching. J. Chem. Phys. 82:4611 (1985).ADSCrossRefGoogle Scholar
  11. 10.
    R. T. Skodje and F. Borondo, On the use of adiabatic switching to locate quantized periodic orbits: Application to bound and reactive multidimensional problems, J. Chem. Phys. 84:1533 (1986).ADSCrossRefGoogle Scholar
  12. 11.
    C. Jaffé, Time-independent adiabatic switching in quantum mechanics, J. Chem.Phys. 86:4499 (1987).ADSCrossRefGoogle Scholar
  13. 12.
    J. B. Keller, Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems, Annals Phys. 4:180 (1958).ADSMATHCrossRefGoogle Scholar
  14. 13.
    J. B. Keller and S. I. Rubinow, Asymptotic solution of eigenvalue problems, Annals Phys. 9:24 (1960).ADSMATHCrossRefGoogle Scholar
  15. 14.
    J. B. Keller, Semiclassical mechanics, SIAM Rev. 27:485 (1985).MathSciNetMATHCrossRefGoogle Scholar
  16. 15.
    V. P. Maslov, “Theorie des Perturbations,” Dunod, Paris (1972).MATHGoogle Scholar
  17. 16.
    I. C. Percival, Semiclassical theory of bound states, Adv. Chem. Phys. 36:1 (1977).CrossRefGoogle Scholar
  18. 17.
    R. E. Meyer, On exponential asymptotics for nonseparable wave equations, Part I, Complex geometrical optics and connection, SIAM J. Appl. Math., to appear.Google Scholar
  19. 18.
    V. P. Maslov, The scattering problem in the quasiclassical approximation, Dokl.Acad. Nauk. SSSR 151:306 (1963)Google Scholar
  20. 18a.
    V. P. Maslov, The scattering problem in the quasiclassical approximation, (Soviet Phys. Dokl. 8:666 (1964)).ADSGoogle Scholar
  21. 19.
    V. P. Maslow, Nonstandard characteristics in asymptotic problems, Uspekhi Mat.Nauk. 38:6:3 (1983)MathSciNetADSGoogle Scholar
  22. 19a.
    V. P. Maslow, Nonstandard characteristics in asymptotic problems, (Russ. Math. Surv. 38:6:1 (1983)).Google Scholar
  23. 20.
    R. E. Langer, On tne asymptotic solution of ordinary differential equations, Trans. Amer. Math. Soc. 33:23 (1931).MathSciNetCrossRefGoogle Scholar
  24. 21.
    F. W. J. Olver, “Asymptotics and Special Functions,” Academic Press, New York (1974).Google Scholar
  25. 22.
    R. E. Meyer, A simple explanation of the Stokes phenomenon, SIAM Rev. 31:435 (1989).MathSciNetMATHCrossRefGoogle Scholar
  26. 23.
    A. Zwaan, Intensitaeten im Ca-funkenspektrum. Arch. Neerland. Sci. Exactes Natur 3A 12:1 (1929).Google Scholar
  27. 24.
    Yu. A. Kravtsov, A modification of the geometrical optics method, Radiofizika 7:664(1964).Google Scholar
  28. 25.
    D. Ludwig, Uniform asymptotic expausions at a caustic, Commun. Pure Appl. Math. 19:215 (1966).MathSciNetMATHCrossRefGoogle Scholar
  29. 26.
    R. E. Meyer and J. F. Painter, Connection for wave modulation, SIAM J. Math. Anal. 14:450 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  30. 27.
    R. E. Meyer, Irregular points of modulation, Adv. Appl. Math. 4:145 (1983).MATHCrossRefGoogle Scholar
  31. 28.
    R. E. Meyer and M. C. Shen, “On exponential asymptotics for nonseparable wave equations, Part III, Approximate spectral bands of periodic potentials on strips,” SIAM J. Appl. Math, to appear.Google Scholar
  32. 29.
    G. Floquet, Sur les equations differentielles lineaires a coefficients periodiques, Ann. Ecole Norm. ser. 2, 12:47 (1883).MathSciNetGoogle Scholar
  33. 30.
    W. Magnus and S. Winkler, “Hill’s Equation,” Wiley-Interscience, New York (1966).Google Scholar
  34. 31.
    E. M. Harrell, The band structure of a one-dimensional, periodic system in a scaling limit, Ann. Physics 119:351 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  35. 32.
    M. L Weinstein and J. B. Keller, Hill’s equation with a large potential SIAM J. Appl. Math. 45:200 (1985).Google Scholar
  36. 33.
    M. C. Shen, R. E. Meyer and J. B. Keller, Spectra of water waves in channels and around islands, Phys. Fluids 11:2289 (1968).ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • R. E. Meyer
    • 1
  1. 1.Center for the Mathematical SciencesUniversity of WisconsinMadisonUSA

Personalised recommendations