Gravity-Capillary Free Surface Flows

  • Jean-Marc Vanden-Broeck
Part of the NATO ASI Series book series (NSSB, volume 284)


This paper describes the effect of surface tension on various nonlinear free surface flow problems. Accurate numerical solutions are presented for the flow past a bubble in a tube, the cavitating flow past a curved obstacle and gravity capillary elevation solitary waves. Each flow is characterized by a continuum of solutions when surface tension is neglected. It is shown that there is a discrete set of solutions when surface tension is taken into account.


Surface Tension Free Surface Solitary Wave Periodic Wave Froude Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerberg, R. C., 1975, J. Fluid Mech. 70: 333.MathSciNetADSMATHCrossRefGoogle Scholar
  2. Ackerberg, R. C. and Liu, T. J., 1987, Phys. Fluids, 30: 289.ADSMATHCrossRefGoogle Scholar
  3. Amick, C. J. and Kirchgässner, K., 1989, Arch. Rational Mech. Anal., 105: 1.MathSciNetADSMATHCrossRefGoogle Scholar
  4. Beale, J. T., Comm. Pure Appl. Math. (to appear).Google Scholar
  5. Benjamin, T. B., 1982, Quart. Appl. Math., 37: 183.MathSciNetGoogle Scholar
  6. Birkhoff, G. and Zarantonello, E., 1957, “Jets, Wakes and Cavities”, Academic Press, New York.MATHGoogle Scholar
  7. Brodetsky, S., 1923, Proc. R. Soc. London, Ser. A, 102: 543.ADSGoogle Scholar
  8. Chen, B. and Saffman, P. G., 1980, Studies in Appl. Math., 62: 95.MathSciNetMATHGoogle Scholar
  9. Collins, R., 1965, J. Fluid Mech., 22: 763.ADSMATHCrossRefGoogle Scholar
  10. Couet, B. and Strumolo, 1987, J. Fluid Mech., 184: 1.ADSCrossRefGoogle Scholar
  11. Cumberbatch, E. and Norbury, J., 1979, Q. J. Mech. Appl. Math., 32: 303.MathSciNetMATHCrossRefGoogle Scholar
  12. Garabedian, R. R., 1957, Proc. R. Soc. London A 241: 423.MathSciNetADSMATHCrossRefGoogle Scholar
  13. Harrison, W. J., 1909, Proc. Lond. Math. Soc., 7: 107.MATHCrossRefGoogle Scholar
  14. Hogan, S. J., 1980, J. Fluid Mech., 96, 417.MathSciNetADSMATHCrossRefGoogle Scholar
  15. Hunter, J. K. and Scherule, J., 1988, Physica D 32:253.MathSciNetADSMATHCrossRefGoogle Scholar
  16. Hunter, J. K. and Vanden-Broeck, J.-M., 1983, J. Fluid Mech., 134: 205.MathSciNetADSMATHCrossRefGoogle Scholar
  17. Korteweg, D. J. and de Vries, G., 1895, Phil. Mag., 39: 422.Google Scholar
  18. Levine, H. and Yang, Y., 1990, Phys. Fluids A 2: 542.ADSMATHCrossRefGoogle Scholar
  19. McLean, J. W. and Saffman, P. G., 1981, J. Fluid Mech., 102: 455.ADSMATHCrossRefGoogle Scholar
  20. Nayfeh, A. H., 1970, J. Fluid Mech., 40: 671.ADSMATHCrossRefGoogle Scholar
  21. Romero, L., 1982, Ph.D. thesis, California Institute of Technology.Google Scholar
  22. Saffman, P. G. and Taylor, G. I., 1958, Proc. R. Soc. London A 245: 312.MathSciNetADSMATHCrossRefGoogle Scholar
  23. Schwartz, L. W. and Vanden-Broeck, J.-M., 1979, J. Fluid Mech., 95: 119.MathSciNetADSMATHCrossRefGoogle Scholar
  24. Sun, S. M., 1991, J. Math. Anal. Appl. (to appear).Google Scholar
  25. Tanveer, S., 1986, Phys. Fluids, 29: 3537.MathSciNetADSMATHCrossRefGoogle Scholar
  26. Vanden-Broeck, J.-M., 1981, Q. J. Mech. Appl. Math., 34: 465.MATHCrossRefGoogle Scholar
  27. Vanden-Broeck, J.-M., 1983a, Phys. Fluids, 26: 2033.MathSciNetADSCrossRefGoogle Scholar
  28. Vanden-Broeck, J.-M., 1983b, J. Fluid Mech., 133: 255.ADSMATHCrossRefGoogle Scholar
  29. Vanden-Broeck, J.-M., 1984a, Phys. Fluids, 27: 1090.ADSMATHCrossRefGoogle Scholar
  30. Vanden-Broeck, J.-M., 1984b, Phys. Fluids, 27: 2604.ADSMATHCrossRefGoogle Scholar
  31. Vanden-Broeck, J.-M., 1984c, Phys. Fluids, 27: 2601.ADSMATHCrossRefGoogle Scholar
  32. Vanden-Broeck, J.-M., 1986, Phys. Fluids, 29: 1343.MathSciNetADSCrossRefGoogle Scholar
  33. Vanden-Broeck, J.-M., 1991a, Phys. Fluids, (in press).Google Scholar
  34. Vanden-Broeck, J.-M., 1991b, Phys. Fluids, (in press).Google Scholar
  35. Vanden-Broeck, J.-M., 1991c, Phys. Fluids, (submitted).Google Scholar
  36. Vanden-Broeck, J.-M. and Shen, M. C., 1983, J. Appl. Math. and Physics, 34: 112.MathSciNetMATHCrossRefGoogle Scholar
  37. Wilton, J. R., 1915, Phil. Mag. 29: 688.Google Scholar
  38. Zufira, J. A., 1987, J. Fluid Mech. 184: 183.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jean-Marc Vanden-Broeck
    • 1
  1. 1.Mathematics Department and Center for the Mathematical SciencesUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations