Viscous Displacement in a Hele-Shaw Cell

  • S. Tanveer
Part of the NATO ASI Series book series (NSSB, volume 284)


A Hele-Shaw cell is a pair of parallel plates that are separated by a small gap 6 . The motion of a less viscous fluid displacing a more viscous fluid in this gap under the action of some imposed pressure gradient or gravity or fluid injection has been the study of intensive research over the last decade. (See Saffman1, Bensimon et al2, Homsy3, Pelee4 and Kessler, Koplik & Levine5 for reviews from a range of perspectives). This has been spurred by the newly discovered mathematical analogies between this flow and dendritic crystal growth, directional solidification and diffusion limited aggregation (see references 4,5), though Darcian flow through a porous medium was the original motivation6. In most Hele-Shaw cell studies to date, the geometry consists of a long rectilinear channel where the width of the cell is 2a , with b << a (Figure 1). In this case, the interfacial motion is caused by an imposed pressure gradient which causes the more viscous fluid at infinity to be displaced with velocity V . Alternately, gravity can effect the interfacial displacement.


Physical Domain Stokes Line Channel Centerline Cusp Angle Continuous Tangent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.G. Saffman, Viscous fingering in a Hele-Shaw cell, J.FluidMech. 173:73 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    D. Bensimon, L.P. Kadanoff, S. Liang, B.I. Shraiman, & C. Tang, Rev. Mod. Phys., 58, 977 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    G.M. Homsy, Ann. Rev. Fluid Mech., 19, 271 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    P. Pelce, 1988, “Dynamics of Curved Front”, Academic Press.Google Scholar
  5. 5.
    D. Kessler, J. Koplik, & H. Levine, Patterned Selection in fingered growth phenomena, Advances in Physics, 37:255 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    P.G. Saffman, & G.I. Taylor, The penetration of a fluid into a porous medium of Hele-Shaw cell containing a more viscous fluid, Proc. R. Soc. London Ser. A 245:312 (1958)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    H. Thome, M. Rabaud, V. Hakim & Y. Couder, The Saffman Taylor Instability: From the linear to the circular geometry, Phys. Fluids A 1:224 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    M. Ben Amar & R. Combescot, Saffman-Taylor viscous fingering in a wedge, to appear in This Conference Proceedings, (1991)Google Scholar
  9. 9.
    Y. Tu, Saffman-Taylor problem in sector geometry, to appear in This Conference Proceedings, (1991)Google Scholar
  10. 10.
    J.J. Xu, Globally unstable oscillatory modes in viscous fingering, European Journal of Applied Math., 2:105, (1991)MATHCrossRefGoogle Scholar
  11. 11.
    S. Hill, Channelling in packed columns, Chem. Engng. Sci 1:247 (1952)CrossRefGoogle Scholar
  12. 12.
    R.L. Chuoke, P. Van Meurs & C.Van Der Poel, The instability of slow immiscible viscous liquid-liquid displacements in permeable media, Trans. AIME 216: 188 (1959)Google Scholar
  13. 13.
    E. Pitts, Penetration of fluid into a Hele-Shaw cell: the Saffman-Taylor experiment, J. Fluid Mech. 97: 53 (1980)ADSCrossRefGoogle Scholar
  14. 14.
    P. Tabeling & A. Libchaber, Film draining and the Saffman-Taylor problem, Phys. Rev. A, 33: 794 (1986)CrossRefGoogle Scholar
  15. 15.
    P. Tabeling, G. Zocchi, & A. Libchaber, An experimental study of the Saffman-Taylor instability, J. Fluid Mech., 177: 67 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    T. Maxworthy, The nonlinear growth of a gravitationally unstable interface in a Hele-Shaw cell, J. Fl. Mech., 177, 207 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    A. Arneodo, Y. Couder, G. Grasseau, V. Hakim, K M. Rabaud, Uncovering the Analytical Saffman-Taylor Finger in Unstable Viscous fingering and Diffusion Limited Aggregation, Phys. Rev. Lett., 63, 984 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Couder, N. Gerard & M. Rabaud, Narrow fingers in the Saffman-Taylor instability, Phys. Rev. A, 34: 5175 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    G. Zocchi, B. Shaw, A. Libchaber & L. Kadanoff, Finger narrowing under local perturbations in the Saffman-Taylor problem, Phys Rev. A, 36:1894 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    E. Ben-Jacob, R. Godbey, N.D. Goldenfeld, J. Koplik, H. Levine, T. Mueller & L.M. Sander, Experimental demonstration of the role of anisotropy in interfacial pattern formation, Phys. Rev. Lett., 55:1315 (1985)ADSCrossRefGoogle Scholar
  21. 21..
    M. Rabaud, Y. Couder & N. Gerard, Dynamics and stability of anomalous Saffman-Taylor fingers, 1987, To be published in the J. Fl. Mech.Google Scholar
  22. 22.
    J. Bataille, Stabilite d’un deplacement radial non miscible Revue Inst. Pe’trole, 23, 1349 (1968)Google Scholar
  23. 23.
    L. Paterson, Radial Fingering in a Hele-Shaw cell, J. FI. Mech. 113, 513 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    J. W. McLean, & P.G. Saffman, The effect of surface tension on the shape of fingers in a Hele-Shaw cell, J. Fluid Mech. 102:455 (1981)ADSMATHCrossRefGoogle Scholar
  25. 25.
    S. Tanveer & P.G. Saffman, The effect of finite viscosity ratio on the stability of fingers and bubbles in a Hele-Shaw cell, cell, Phys. Fluids, 31: 3188 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    E. Brener, D. Kessler, H. Levene & W. Rappel, Europhys. Lett., 13:161 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    S.J. Weinstein, E.B. Dussan & L.H. Ungar, A theoretical study of two phase flow through a narrow gap with a moving contact line: viscous fingering in a Hele-Shaw cell J. Fluid Mech., 221: 53 (1990)ADSMATHCrossRefGoogle Scholar
  28. 28.
    C. W. Park, & G. M. Homsy, Two-phase displacement in Hele-Shaw cells: theory, J. Fluid Mech., 139: 291, (1985)ADSCrossRefGoogle Scholar
  29. 29.
    D. A. Reinelt, Interface conditions for two-phase displacement in Hele-Shaw cells, J. Fluid Mech, 183: 219 (1987)ADSMATHCrossRefGoogle Scholar
  30. 30.
    D. A. Reinelt, The effect of thin film variations and transverse curvature on the shape of fingers in a Hele-Shaw cell, Phys. Fluids 30: 2617 (1987)ADSMATHCrossRefGoogle Scholar
  31. 31.
    L.W. Schwartz, & A. J. Degregoria, Simulation of Hele-Shaw cell fingering with finite capillary number effects included, Phys. Rev. A, 35:276, (1987)ADSCrossRefGoogle Scholar
  32. 32.
    S. Sarkar, & D. Jasnow, 1987, Quantitative test of solvability theory for the Saffman-Taylor problem, Phys. Rev. A, 35:4900 (1987)Google Scholar
  33. 33.
    S. Tanveer, Analytic theory for the selection of Saffman-Taylor finger in the presence of thin-film effects, Proc. Roy. Soc. London, A 428:511 (1990)ADSMATHCrossRefGoogle Scholar
  34. 34.
    G.I. Taylor & P.G. Saffman, A note on the motion of bubbles in a Hele-Shaw cell and porous medium, Q. Jour. Mech. Appl. Math 12:265 (1959)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    L.P. Kadanoff, Phys. Rev. Lett., 65, 2986 (1990)ADSCrossRefGoogle Scholar
  36. 36..
    G.L. Vasconcelos & L.P. Kadanoff, Stationary solutions for the Saffman-Taylor problem with surface tension, To appear in Phys. Rev. A, (1991)Google Scholar
  37. 37.
    L. A. Romero, Ph.d thesis, Department of Applied Math, California Institute of Technology, 1982Google Scholar
  38. 38.
    J.M. Vanden-Broeck, Fingers in a Hele-Shaw cell with surface tension, Phys. Fluids, 26:2033 (1983)MathSciNetADSCrossRefGoogle Scholar
  39. 39..
    H. Segur, The geometric model of crystal growth- an overview, in this proceeding (1991)Google Scholar
  40. 40.
    D. Kessler & H. Levine, The theory of Saffman-Taylor finger, Phys. Rev. A 32:1930 (1985)ADSCrossRefGoogle Scholar
  41. 41.
    R. Combescot, T. Dombre, V. Hakim, Y. Pomeau, & A. Pumir, Shape selection for Saffman-Taylor fingers, Phys. Rev Lett., 56:2036 (1986)ADSCrossRefGoogle Scholar
  42. 42.
    B.I. Shraiman, On velocity selection and the Saffman-Taylor problem, Phys. Rev. Lett., 56:2028 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    D.C. Hong, & J.S. Langer, Analytic theory for the selection of Saffman-Taylor finger, Phys. Rev. Lett., 56:2032 (1986)ADSCrossRefGoogle Scholar
  44. 44.
    S. Tanveer, Analytic theory for the selection of symmetric Saffman-Taylor finger, Phys. Fluids 30:1589 (1987)MathSciNetADSMATHCrossRefGoogle Scholar
  45. 45.
    A.T. Dorsey & O. Martin, Saffman Taylor fingers with anisotropic surface tension, Phys. Rev. A 35: 3989 (1987)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    R. Combescot, T. Dombre, V. Hakim, Y. Pomeau, & A. Pumir, Analytic theory of the Saffman-Taylor fingers, Phys. Rev. A 37: 1270 (1987)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    S. Tanveer, The effect of surface tension on the shape of a Hele-Shaw cell bubble, Phys. Fluids, 29, 3537 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  48. 48.
    S. Tanveer, New solutions for steady bubbles in a Hele-Shaw cell, Phys. Fluids, 30, 651 (1987)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    R. Combescot, & T. Dombre, Selection in the Saffman-Taylor bubble and assymmetrical finger problem, Phys. Rev. A, 38 (5), 2573 (1988)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    D.C. Hong, & F. Family, Bubbles in the Hele-Shaw cell: Pattern selection k Tip perturbations, Phys. Rev. A, 37, 2724 (1988)ADSCrossRefGoogle Scholar
  51. 51.
    S. Tanveer, Analytic theory for the selection and stability of bubbles in a Hele-Shaw cell, Part I: Velocity Selection, J. of Th. & Comp. Fl. Mech, 1 (3), 135–164 (1989)MATHGoogle Scholar
  52. 52.
    P.G. Saffman & G.I. Taylor, in Proc. 2nd Ann. Naval Symp. Hydrodynamics, p.277 (1959)Google Scholar
  53. 53..
    S.K.Sarkar, private communication to P.G. Saffman (1986)Google Scholar
  54. 54.
    D. Kessler & H. Levine, Stability of finger patterns in Hele-Shaw cells, Phys. Rev. A 33: 2632 (1986)ADSGoogle Scholar
  55. 55.
    D. Bensimon, Stability of viscous fingering, Phys. Rev. A 33: 1302 (1986)ADSCrossRefGoogle Scholar
  56. 56.
    S. Tanveer, Analytic theory for the linear stability of Saffman-Taylor finger, Phys. Fluids 30: 2318 (1987)ADSMATHCrossRefGoogle Scholar
  57. 57..
    D. Kessler & H. Levine, Phys. Fluids, (1987)Google Scholar
  58. 58.
    S. Tanveer & P.G. Saffman, Stability of bubbles in a Hele-Shaw cell, Phys. Fluids, 30:2624 (1987)ADSMATHCrossRefGoogle Scholar
  59. 59.
    D. Bensimon, P. Pelce & B.I. Shraiman, Dynamics of Curved Front and pattern selection, J. Physique, 48, 2081 (1987)CrossRefGoogle Scholar
  60. 60.
    A.J. Degregoria & L.W. Schwartz, A boundary-integral method for two-phase displacement in Hele-Shaw cells, J. Fluid Mech., 164: 383 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  61. 61.
    A.J. Degregoria & L.W. Schwartz, Saffman-Taylor finger width at low interfacial tension, Phys. Rev. Lett., 58:1742 (1987)ADSCrossRefGoogle Scholar
  62. 62.
    E. Meiburg & G.M. Homsy, Nonlinear unstable viscous fingers in Hele-Shaw flows. II Numerical simulation, Phys. Fluids, 31, 429, (1988)ADSMATHCrossRefGoogle Scholar
  63. 63.
    J.J. Xu, Asymptotic theory of steady axi-symmetrical needle growth, Studies in Appl. Math., 82:71, (1990)ADSMATHGoogle Scholar
  64. 64.
    J.J. Xu, Interface wave theory of solidification: Dendritic pattern formation and selection of growth velocity, Phys. Rev. A, 43:930 (1991)MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    J.W. McLean, Ph.d Thesis, Department of Applied Math, California Institute of Technology, (1980)Google Scholar
  66. 66..
    S.Tanveer, Evolution of a Hele-Shaw interface for small surface tension, submitted to Phil. Trans R. Soc. London. 1991Google Scholar
  67. 67.
    M. Kruskal & H. Segur, Asymptotics beyond all orders, Aeronautical Res. Associates of Princeton, Technical Memo, 85–25, 1986Google Scholar
  68. 68.
    S.D. Howison, Fingering in Hele-Shaw cells, J. Fl. Mech. 167, 439 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  69. 69.
    B.I. Shraiman & D. Bensimon, Singularities in nonlocal interface dynamics, Phys. Rev. A, 30, 2840 (1984)MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    L.A. Galin, Dokl. Akad. Nauk. S.S.S.R. 47, 246–249 (1945)MathSciNetMATHGoogle Scholar
  71. 71.
    P.Ya Polubarinova-Kochina, Dokl. Akad. Nauk. S.S.S.R. 47:254 (1945)Google Scholar
  72. 72.
    P. Ya Polubarinova-Kochina Prikl. Mathem. Mech.. 9:79 (1945)Google Scholar
  73. 73.
    P.P. Kufarev, Dokl. Akad. Nauk. S.S.S.R. 60:1333 (1948)MathSciNetGoogle Scholar
  74. 74..
    E.Yu. Hohlov, M.I.A.N.Preprint, no. 14, Steklov Institute, Moscow (1990)Google Scholar
  75. 75.
    P.G. Saffman, Exact solutions for the growth of fingers from a flat interface between two fluids in a porous medium or Hele-Shaw cell, Q. J. Mech. appl. Math, 12, 146–150 (1959)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    S.D. Howison, Proc. Roy. Soc. Edin., A102, 141–148 (1985)MathSciNetGoogle Scholar
  77. 77.
    S.D. Howison, Siam J. Appl. Math, 46:20 (1986)MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    A.A. Lacey, J. Australian Math. Soc. B24:171 (1982)MathSciNetGoogle Scholar
  79. 79.
    S. Richardson, Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fl. Mech. 56 (4), 609 (1972)ADSMATHCrossRefGoogle Scholar
  80. 80..
    S.D. Howison, Complex variable methods in Hele-Shaw moving boundary problems, Submitted to the European J. Appl. Math. (1991)Google Scholar
  81. 81.
    B. Gustaffson, Nonlinear Analysis, T.M.A., 9:203 (1984)Google Scholar
  82. 82.
    B. Gustaffson, Arkiv. fur Mathematik. 25:231 (1987)ADSCrossRefGoogle Scholar
  83. 83.
    Duchon, J & Robert, R., Evolution d’une interface par capillarite’ et diffusion de volume, Ann l’Inst. H. Poincare’ , 1, 361 (1984)MathSciNetMATHGoogle Scholar
  84. 84.
    G. Trygvasson, & H. Aref, Numerical experiments on Hele-Shaw cell with a sharp interface, J. Fl. Mech.. 136, 1 (1983)ADSCrossRefGoogle Scholar
  85. 85.
    G. Trygvasson, & H. Aref, Finger-interaction mechanisms in stratified Hele-Shaw flow, J. Fl. Mech.. 154, 287 (1985)ADSCrossRefGoogle Scholar
  86. 86.
    S. Liang, Random walk simulations of flow in Hele-Shaw cells, Phys. Rev. A., 33:2663 (1986)ADSCrossRefGoogle Scholar
  87. 87.
    P. Constantin & L.P. Kadanoff, Physica D, 47:450 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  88. 88.
    P. Constantin & L.P. Kadanoff, Phil. Trans. R. Soc. Lond. A. 333:379 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  89. 89.
    R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation, J. Fluid Mech.. 167:65 (1986)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • S. Tanveer
    • 1
  1. 1.Department of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations