Plant Evolution in Extreme Environments

  • A. D. Bradshaw


Extreme habitats have a fascination of their own. They are occupied by only a few very characteristic species, and they are easy to recognize ecologically and spatially. In extreme environments a single physical factor is usually dominating and other factors subsidiary. This makes it easy to understand what is going on, and to define the intensity of the factor. Extreme habitats are so distinctive that it is also easy to see where they begin and end. Because of this they have important advantages for the study of evolution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard R.W. & Hansche P. E. (1964) Some parameters of population variability and their implications in plant breeding. Adv. Agron. 16, 281–325.CrossRefGoogle Scholar
  2. Antonovics J. (1968) Evolution in closely adjacent plant populations. V. Evolution of self fertility. Heredity 23, 219–238.CrossRefGoogle Scholar
  3. Antonovics J., Bradshaw A.D. & Turner R.G. (1971) Heavy metal tolerance in plants. Adv. Ecol. Res. 7 (in press).Google Scholar
  4. Aston J. L. & Bradshaw A. D. (1966) Evolution in closely adjacent plant populations. II. Agrostis stolonifera in maritime habitats. Heredity 21, 649–664.CrossRefGoogle Scholar
  5. Bateman A. J. (1947) Contamination in seed crops. III. Relation with isolation distance. Heredity 1, 303–336.CrossRefGoogle Scholar
  6. Beard D. E. & Hollowell E. A. (1952) The effect on performance when seed of forage crop varieties is grown under different environmental conditions. Proc. 6th Int. Grassl. Cong. 860-866.Google Scholar
  7. Bradshaw A. D. (1952) Populations of Agrostis tenuis resistant to lead and zinc poisoning. Nature, Lond. 169, 1098.CrossRefGoogle Scholar
  8. Bradshaw A. D. (1960) Population differentiation in Agrostis tenuis Sibth. III. Populations in varied environments. New Phytol. 59, 92–103.CrossRefGoogle Scholar
  9. Bradshaw A. D. (1965) Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 31, 115–155.Google Scholar
  10. Bradshaw A. D. (1967) An ecologist’s viewpoint. In ‘Ecological Aspects of the Mineral Nutrition of Plants’ I. H. Rorison (ed.), Brit. Ecol. Soc. Symp. 9, 415-427.Google Scholar
  11. Bradshaw A. D., McNeilly T. S. & Gregory R. P. G. (1965) Industrialization, evolution and the development of heavy metal tolerance in plants. In ‘Ecology and the Industrial Society’. Brit. Ecol. Soc. Symp.5, 327–3Google Scholar
  12. Charles A. H. (1961) Differential survival of cultivars of Lolium, Dactylis and Phleum. J. Br. Grassld Soc. 16, 69–75.CrossRefGoogle Scholar
  13. Clausen J. & Hiesey W.M. (1958) Experimental studies on the nature of species. IV. Genetic structure of ecological races. Carnegie Inst. Washington Publ. 615, 312 pp.Google Scholar
  14. Clausen J., Keck D. D. & Hiesey W. M. (1948) Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Carnegie Inst. Washington Publ. 581, 129 pp.Google Scholar
  15. Cooper J. P. (1960) Selection for production characters in ryegrass. Proc. 8th Int. Grassld. Cong. 41-44.Google Scholar
  16. Ehrendorfer F. (1953) Okologisch-geographische Mikro-Differenzierung einer Population von Galium pumilum Murr, s.str. Osterreich. Bot. Z. 100, 616–638.CrossRefGoogle Scholar
  17. Ford E. B. (1964) Ecological Genetics. Methuen, London, 335 pp.Google Scholar
  18. Gill J. J. B. & Walker S. (1971) Studies on Cytisus scoparius (L) Wimmer with particular reference to the prostarate forms. Watsonia, in press.Google Scholar
  19. Gregor J. W. (1930) Experiments on the genetics of wild populations, Plantago maritima. J. Genet.22, 15–25.CrossRefGoogle Scholar
  20. Gregor J. W. (1946) Ecotypic differentiation. New Phytol. 45, 254–270.CrossRefGoogle Scholar
  21. Gregory R. P. G. & Bradshaw A. D. (1965) Heavy metal tolerance in populations of Agrostis tenuis Sibth. and other grasses. New Phytol. 64, 131–143.CrossRefGoogle Scholar
  22. Harberd D. J. (1961) Observations on population structure and longevity of Festuca rubra L. New Phytol. 60, 184–206.CrossRefGoogle Scholar
  23. Harper J. L. (1967) A Darwinian approach to plant ecology. J. Ecol. 55, 247–270.CrossRefGoogle Scholar
  24. Hodgson M. B. (1969) Mercury resistance in ship-borne Enteromorpha. Hons. thesis, Dept. Botany, Univ. Liverpool.Google Scholar
  25. Hosgood S. M. W. & Parsons P. A. (1967) The exploitation of genetic heterogeneity among founders of laboratory populations of Drosophila prior to directional selection. Experientia 23, 1–5.CrossRefGoogle Scholar
  26. Jain S. K. & Bradshaw A. D. (1966) Evolutionary divergence in adjacent plant populations. I. The evidence and its theoretical analysis. Heredity 21, 407–441.CrossRefGoogle Scholar
  27. Jones K. J. (1958) Cytotaxonomic studies in Holcus. I. The chromosome complex in Holcus mollis L. New Phytol. 57, 191–210.CrossRefGoogle Scholar
  28. Jowettd. (1958) Population of Agrostis spp. tolerant to heavy metals. Nature, Lond. 182, 816–817.CrossRefGoogle Scholar
  29. Kemp W. B. (1937) Natural selection within plant species as exemplified in a permanent pasture. J. Hered. 28, 329–333.CrossRefGoogle Scholar
  30. Khan M. S. I. (1969) The process of evolution of heavy metal tolerance in Agrostis tenuis and other grasses. M. Sc. Thesis, University of Wales.Google Scholar
  31. Lee B.T.O. & Parsons P. A. (1968) Selection, prediction and response. Biol. Rev. 43, 139–174.CrossRefPubMedGoogle Scholar
  32. Legro R. A. H. (1965) Delphinium breeding. In ‘Genetics Today,’ nth Int. Cong. Genet. 2, li-lv, 1963. Pergamon Press, Oxford.Google Scholar
  33. Lewontin R. C. (1965) Selection for colonizing ability. In ‘The Genetics of Colonizing Species’, H. G. Baker & G. L. Stebbins (eds.), pp. 79–94. Academic Press, New York.Google Scholar
  34. McNeilly T. (1966) The evolution of copper tolerance in Agrostis. Ph.D. thesis, Univ. Wales.Google Scholar
  35. McNeilly T. (1968) Evolution in closely adjacent plant populations. III. Agrostis tenuis on a small copper mine. Heredity 23, 99–108.CrossRefGoogle Scholar
  36. McNeilly T. & Antonovics J. (1968) Evolution in closely adjacent plant populations. IV. Barriers to gene flow. Heredity 23, 205–218.CrossRefGoogle Scholar
  37. McNeilly T. & Bradshaw A. D. (1968) Evolutionary processes in populations of copper tolerant Agrostis tenuis Sibth. Evolution, Lancaster, Pa. 22, 108–118.CrossRefGoogle Scholar
  38. Nicolls O.W., Provan D. M. J., Cole M. M. & Tooms J. S. (1965) Geobotany and geochemistry in mineral exploration in the Dugald River Area, Cloncurry District, Australia. Trans. Instn. Min. Metall. 74, 695–799.Google Scholar
  39. Prat S. (1934) Die Erblichkeit der Resistenz gegen Kupfer. Ber. dt. bot. Ges. 52, 65–67.Google Scholar
  40. Reilly R., Chapman V. & Johnson R. (1968) Introduction of yellow rust resistance of Aegilops comosa in wheat by genetically induced homeologous recombination. Nature, Lond. 217, 383–384.CrossRefGoogle Scholar
  41. Russell G. & Morris P. (1970) Copper tolerance in the marine fouling alga Ectocarpus siliculosus. Nature, Lond.228, 288–2CrossRefGoogle Scholar
  42. Skelton M. (1969) Copper tolerance in ship-borne Ectocarpus siliculosus. Hons. thesis, Dept. Botany, Univ. Liverpool.Google Scholar
  43. Snaydon R.W. (1970) Rapid population differentiation in a mosaic environment. I. The response of Anthoxanthum odoratum populations to soil. Evolution 24, 257–269.CrossRefPubMedGoogle Scholar
  44. Stebbins J. L. (1950) Variation and Evolution in Plants. Columbia Univ. Press, New York, 643 pp.Google Scholar
  45. Sylven N. (1937) The influence of climatic conditions on type composition. Imp. Bureau Plant Genetics, Herbage Bull. 21, 8 pp.Google Scholar
  46. Turesson G. (1922) The genotypical response of the plant species to the habitat. Hereditas 3, 211–350.CrossRefGoogle Scholar
  47. Turesson G. (1925) Plant species in relation to habitat and climate. Hereditas 6, 147–234.CrossRefGoogle Scholar
  48. Turesson G. (1931) The geographical distribution of the alpine ecotype of some Eurasiatic plants. Hereditas 19, 329–346.Google Scholar
  49. Watson P. J. (1969) Evolution in closely adjacent plant populations. VI. An entomophilous species, Potentilla erecta, in two contrasting habitats. Heredity 24, 407–422.CrossRefGoogle Scholar
  50. Wilkins D. A. (1957) A technique for the measurement of lead tolerance in plants. Nature, Lond. 180, 37–38.CrossRefGoogle Scholar
  51. Wilkins D. A. (1960) The measurement and genetic analysis of lead tolerance in Festuca ovina. Rep. Scott. Pl. Breed. Stn1960, 95–98.Google Scholar
  52. Woodworth C. M., Leng E. R. & Jugenheimer R.W. (1952) Fifty generations of selection for protein and oil in corn. Agron. J. 44, 60–65.CrossRefGoogle Scholar

Copyright information

© Blackwell Scientific Publications 1971

Authors and Affiliations

  • A. D. Bradshaw

There are no affiliations available

Personalised recommendations