The whole process of chemiluminescence can be considered as the formation of an excited product (P*) from starting reactants A and B, followed by transition of the excited molecule P* to the ground state P with emission of a photon:
$$A + B \to {P^ * } \to P + h\upsilon$$


Excited State Methylene Blue Singlet Oxygen Excited Species Microsomal Lipid Peroxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R.C., 1980, Free radical production by reticuloendothelial cells, in “The Reticuloendothelial System,” 2:309, A.J. Sbarra and R.R. Strauss, eds., Plennum Publishing Corp., Oxford.Google Scholar
  2. Allen, R.C., 1982, Biochemiexcitation: chemiluminescence and the study of biological oxygenation reactions, in “Chemical and Biological Generation of Excited States,” p. 309, W. Adam and G. Cilento, eds., Academic Press, New York.CrossRefGoogle Scholar
  3. Allen, R.C., and Lieberman, M.M., 1984, Kinetic analysis of microbe opsonification based on stimulated polymorphonuclear leukocyte oxygenation activity, Infec. Immun., 45:475.Google Scholar
  4. Augusto, O., Cilento, G., Jung, J., and Song, P.-S., 1978, Phototransformation of phytochrome in the dark, Biochem. Biophys. Res. Commun., 83:963.PubMedCrossRefGoogle Scholar
  5. Aust, S.D., and Svingen, B.A., 1982, The role of iron in enzymatic lipid peroxidation, in “Free Radicals in Biology,” 5:1, W.A. Pryor, ed., Academic Press, New York.Google Scholar
  6. Barenboim, G.M., Domanskii, A.N., and Turoverov, K.K., 1969, “Luminescence of Biopolymers and Cells,” Plenum Press, New York.Google Scholar
  7. Bartoli, G.M., Müller, A., Cadenas, E., and Sies, H., 1983, Antioxidant efficiency of diethyl-dithiocarbamate on microsomal lipid peroxidation assessed by low-level chemiluminescence and alkane production, FEBS Lett., 164:371.PubMedCrossRefGoogle Scholar
  8. Bechara, E.J.H., Faria Oliveira, O.M.M., Duran, N., Casadei de Baptista, R., and Cilento, G., 1979, Peroxidase-catalyzed generation of triplet acetone, Photochem. Photobiol, 30:101.CrossRefGoogle Scholar
  9. Bodaness, R.S., 1982, The potential role of NADPH and cytoplasmic NADP-linked dehyrogenases in protection against singlet oxygen mediated cellular toxicity, Biochem. Biophys. Res. Commun., 108:1709.PubMedCrossRefGoogle Scholar
  10. Bodaness, R.S., and Chan, P.C., 1977, Singlet oxygen as a mediator in the hematoporphyrin-catalyzed photooxidation of NADPH to NADP in deuterium oxide, J.Biol. Chem., 252:8554.PubMedGoogle Scholar
  11. Bodaness, R.S., and Chan, P.C., 1979, Ascorbic acid as a scavenger of singlet oxygen, FEBS Lett, 105:195.CrossRefGoogle Scholar
  12. Boh, E.E., Baricos, W.H., Bemofsky, C., and Steele, R.H., 1982, Mitochondrial chemiluminescence elicited by acetaldehyde, J. Bioenerg. Biomembr., 14:115.PubMedCrossRefGoogle Scholar
  13. Borg, D.C., and Schaich, K.M., 1984, Cytotoxicity from coupled redox cycling of autooxidizing xenobiotics and metals, Israel J. Chem., 24:38.Google Scholar
  14. Boveris, A., and Cadenas, E., 1982, Production of superoxide radicals and hydrogen peroxide in mitochondria, in “Superoxide Dismutase,” 2:15, L.W. Oberley, ed., CRC Press, Boca Raton.Google Scholar
  15. Boveris, A., Cadenas, E., and Chance, B., 1980, Low-level chemiluminescence of the lipoxygenase reaction, Photobiochem. Photobiophys., 1:175.Google Scholar
  16. Boveris, A., Cadenas, E., and Chance, B., 1981, Ultraweak chemiluminescence: a sensitive assay for oxidative radical reactions, Fed. Proc. Fed. Am. Soc. Exp. Biol., 40:195.Google Scholar
  17. Boveris, A., Fraga, C.G., Varsavsky, A.I., and Koch, O.R., 1983, Increased chemiluminescence and superoxide production in the liver of chronically ethanol-treated rats, Arch. Biochem. Biophys., 227:534.PubMedCrossRefGoogle Scholar
  18. Bowman, D.F., Gillan, T., and Ingold, K.U., 1971, Kinetic applications of EPR spectroscopy. III. Self reactions of dialkyl nitroxide radicals, J.Am. Chem. Soc., 93:6555.CrossRefGoogle Scholar
  19. Brunetti, I.L., Bechara, E.J.H., Cilento, G., and White, E.H., 1982, Possible in vivo formation of lumicolchicines from colchicine by endogenously generated triplet species, Photochem. Photobiol., 36:245.CrossRefGoogle Scholar
  20. Brunetti, I.L., Cilento, G., and Nassi, L., 1983, Energy transfer from enzymically-generated triplet species to acceptors in micelles, Photo. Chem. Photobiol., 38:511.CrossRefGoogle Scholar
  21. Burton, G.W., Joyce, A., and Ingold, K.U., 1983, Is vitamin E the only lipid soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes?, Arch. Biochem. Biophys., 221:281.PubMedCrossRefGoogle Scholar
  22. Cadenas, E., 1984, Biological chemiluminescence, Photochem. Photobiol., 40:823.PubMedCrossRefGoogle Scholar
  23. Cadenas, E., 1985, Oxidative stress and formation of excited species, in “Oxidative Stress”, p. 311, H. Sies, ed., Academic Press, London.Google Scholar
  24. Cadenas, E., Boveris, A., and Chance, B., 1980a, Chemiluminescence of lipid vesicles supplemented with cytochrome c and hydroperoxide, Biochem. J., 188:577.PubMedGoogle Scholar
  25. Cadenas, E., Boveris, A., and Chance, B., 1980b, Low-level chemiluminescence of hydroperoxide-supplemented cytochrome c, Biochem. J., 187:131.PubMedGoogle Scholar
  26. Cadenas, E., Boveris, A., and Chance, B., 1984a, Low-level chemiluminescence of biological systems, in “Free Radicals in Biology,” 6:221, W.A. Pryor, ed., Academic Press, San Diego.Google Scholar
  27. Cadenas, E., Brigelius, R., and Sies, H., 1983a, Paraquat-induced chemiluminescence of microsomal fractions, Biochem. Pharmacol., 32:147.PubMedCrossRefGoogle Scholar
  28. Cadenas, E., Ginsberg, M., Rabe, U., and Sies, H., 1984b, Estimation of alpha-tocopherol antioxidant activity in microsomal lipid peroxidation as detected by low-level chemiluminescence, Biochem. J., 223:755.PubMedGoogle Scholar
  29. Cadenas, E., Müller, A., Brigelius, R., Esterbauer, H., and Sies, H., 1983b, Effects of 4-hydroxynonenal on isolated hepatocytes. Studies on chemiluminescence response, alkane production, and glutathione status, Biochem. J., 214:479.PubMedGoogle Scholar
  30. Cadenas, E., and Sies, H., 1982, Low-level chemiluminescence of liver microsomal fractions initiated by t-butyl hydroperoxide. Relation to microsomal hemoprotein, oxygen dependence, and lipid peroxidation, Eur. J. Biochem., 124:349.PubMedCrossRefGoogle Scholar
  31. Cadenas, E., and Sies, H., 1984, Low-level chemiluminescence as an indicator of singlet molecular oxygen in biological systems, Methods Enzymol., 105:221.PubMedCrossRefGoogle Scholar
  32. Cadenas, E., Sies, H., Campa, A., and Cilento, G., 1984c, Electronically excited states in microsomal membranes: use of chlorophyll-a as an indicator of triplet carbonyls, Photochem. Photobiol., 40:661.CrossRefGoogle Scholar
  33. Cadenas, E., Sies, H., Graf, H., and Ullrich, V., 1983c, Oxene donors yield low-level chemiluminescence with microsomes and isolated cytochrome P-450, Eur. J. Biochem., 130:117.PubMedCrossRefGoogle Scholar
  34. Cadenas, E., Sies, H., Nastainczyk, W., and Ullrich, V., 1983d, Singlet oxygen formation detected by low-level chemiluminescence during the enzymatic reduction of prostaglandin G2 to H2, Hoppe-Seyler’s Z. Physiol. Chem., 364:519.PubMedCrossRefGoogle Scholar
  35. Cadenas, E., Varsavsky, A.I., Boveris, A., and Chance, B., 1980c, Low-level chemiluminescence of cytochrome c-catalyzed decomposition of hydrogen peroxide, FEBS Lett., 113:141.PubMedCrossRefGoogle Scholar
  36. Cadenas, E., Varsavsky, A.I., Boveris, A., and Chance, B., 1981a, Ultraweak chemiluminescence of brain and liver homogenates induced by oxygen organic hydroperoxide, Biochem. J., 198:645.PubMedGoogle Scholar
  37. Cadenas, E., Wefers, H., and Sies, H., 1981b, Low-level chemiluminescence of isolated hepatocytes, Eur. J. Biochem., 119:531.PubMedCrossRefGoogle Scholar
  38. Catalani, L.H., and Bechara, E.J.H., 1984, Quenching of chemiexcited triplet acetone by biologically important compounds in aqueous medium, Photochem. Photobiol., 39:823.CrossRefGoogle Scholar
  39. Chou, P.T., and Khan, A.U., 1983, L-ascorbic acid quenching of singlet delta molecular oxygen in aqueous media: generalized antioxidant property of vitamin C., Biochem. Biophys. Res. Commun., 15:932.CrossRefGoogle Scholar
  40. Cilento, G., 1980, Generation and transfer of triplet energy in enzymatic systems, Acc. Chem. Res., 13:225.CrossRefGoogle Scholar
  41. Cilento, G., 1982, Electronic excitation in dark biological processes, in “Chemical and Biological Generation of Excited States”, W. Adam and G. Cilento, eds., p. 278, Academic Press, New York.Google Scholar
  42. Cilento, G., 1984, Generation of electronically excited triplet species in biochemical systems, Pure & Appl. Chem., 56:1179.CrossRefGoogle Scholar
  43. Dahlgren, C., and Briheim, G., 1985, Comparison between the luminol-dependent chemiluminescence of polymorphonuclear leukocytes and of the myeloperoxidase-HOOH system: influence of pH, cations, and protein, Photochem. Photobiol., 41:605PubMedCrossRefGoogle Scholar
  44. De Toledo, S., Duran, N., and Singh, H., 1983, Inactivation of E. coli ribosomes by the bioenergized system malondialdehyde/horseradish peroxidase, Photobiochem. Photobiophys., 5:237.Google Scholar
  45. Doleiden, F.H., Fahrenholtz, S.R., Lamola, A.A., and Trozzolo, A.M., 1974, Reactivity of cholesterol and some fatty acids towards singlet oxygen, Photochem. Photobiol., 20:519.PubMedCrossRefGoogle Scholar
  46. Duran, N., 1982, Singlet oxygen in biological processes, in “Chemical and Biological Generation of Excited States”, W. Adam and G. Cilento, eds., p. 345, Academic Press, New York.CrossRefGoogle Scholar
  47. Duran, N., and Cilento, G., 1980, Long-range triplet exciton transfer from enzyme generated triplet acetone to xanthene dyes, Photochem. Photobiol., 32:113.CrossRefGoogle Scholar
  48. Duran, N., Farias Furtado, S.T., Faljoni-Alario, A., Campa, A., Brunet, J.E., and Freer, J., 1984, Singlet oxygen generation from the peroxidase-catalyzed aerobic oxidation of an activated -CH2- substrate, J. Photochem., 25:285.CrossRefGoogle Scholar
  49. Duran, N., Haun, M., De Toledo, S.M., Cilento, G., and Silva, E., 1983, Binding of riboflavin to lysozyme promoted by peroxidase-generated triplet acetone, Photochem. Photobiol., 37:247.PubMedCrossRefGoogle Scholar
  50. Duran, N., Haun, M., Faljoni, A., and Cilento, G., 1978, Photochemical oxidation of chlorpromazine in the dark induced by enzymatic ally generated triplet carbonyl compounds, Biochem. Biophys. Res. Commun., 81:785.PubMedCrossRefGoogle Scholar
  51. Duran, N., and Suwa, K., 1981, The generation of excited states during the action of prostaglandin endoperoxide synthase from rabbit renal medula, Rev. Latino amer. Quim., 12:13.Google Scholar
  52. Encinas, M.V., Lissi, E.A., and Olea, A.F., 1985, Quenching of triplet benzophenone by vitamins E and C and by sulfur-containing aminoacids and peptides, Photochem. Photobiol., 42:347.PubMedCrossRefGoogle Scholar
  53. Encinas, M.V., and Scaiano, J.C., 1981, Reaction of benzophenone triplets with allylic hydrogens. A laser flash photolysis study, J.Am. Chem. Soc., 103:6393.CrossRefGoogle Scholar
  54. Esterbauer, H., 1982, Aldehydic products of lipid peroxidation, in “Free Radicals, Lipid Peroxidation, and Cancer”, D.C.H. McBrien and T.F. Slater, eds., p. 101, Academic Press, New York.Google Scholar
  55. Fahrenholtz, S.R., Doleiden, F.H., Trozzolo, A.M., and Lamola, A.A., 1974, On the quenching of singlet oxygen by alpha-tocopherol, Photochem. Photobiol., 20:505.PubMedCrossRefGoogle Scholar
  56. Faria Oliveira, O.M.M., Haun, M., Duran, N., O’Brien, P.J., O’Brien, C.R., Bechara, E.J.H., and Cilento, G., 1978, Enzyme-generated electronically excited carbonyl compounds. Acetone phosphorescence during the peroxidase-catalyzed aerobic oxidation of isobutanal, J.Biol. Chem., 253:4707.PubMedGoogle Scholar
  57. Faulkner, L.R., and Glass, R.S., 1982, Electrochemiluminescence, in “Chemical and Biological Generation of Excited States” (W. Adam and G. Cilento, eds.), p. 191, Academic Press, New York.CrossRefGoogle Scholar
  58. Foote, C.S., 1976, Photosensitized oxidation and singlet oxygen: consequences in biological systems, in “Free Radicals in Biology”, W.A. Pryor, ed., Vol. II, p. 85, Academic Press, New York.Google Scholar
  59. Foote, C.S., Ching, T.-Y., and Geller, G.G., 1974, Chemistry of singlet oxygen. XVIII. Rates of reaction and quenching of alpha-tocopherol and singlet oxygen, Photochem. Photobiol., 20:511.PubMedCrossRefGoogle Scholar
  60. Foote, C.S., and Denny, R.W., 1968, Chemistry of singlet oxygen. VI. Quenching by β-carotene, J. Am. Chem. Soc., 90:6233.CrossRefGoogle Scholar
  61. Foote, C.S., Denny, R.W., Weaver, L., Chang, Y., and Peters, J., 1970, Quenching of singlet oxygen, Ann. New York Acad. Sci., 171:139.CrossRefGoogle Scholar
  62. Foote, C.S., Shook, F.C., and Akaberli, R.B., 1981, Chemistry of superoxide anion. 4. Singlet oxygen is not a major product of dismutation., J. Am. Chem. Soc., 102:2503.CrossRefGoogle Scholar
  63. Förster, T., 1959, Transfer mechanisms of electronic excitation, Dis. Faraday Soc., 27:7.CrossRefGoogle Scholar
  64. Ginsberg, M., and Cadenas, E., 1985, Electronically excited states during diaphorase-catalyzed benzoquinone reduction, Photobiochem. Photobiophys., 9:223.Google Scholar
  65. Gisler, G.C., Diaz, J., and Duran, N., 1982, Electronically excited species in the spontaneous chemiluminescence of urine and its uses in the detection of pathological conditions, Physiol. Chem. Phys., 14:335.PubMedGoogle Scholar
  66. Gisler, G.C., Diaz, J., and Duran, N., 1983, Observations on blood plasma chemiluminescence in normal subjects and cancer patients, Arq. Biol. Tecnol., 26:345.Google Scholar
  67. Grams, G.W., and Eskins, K., 1972, Dye-sensitized photooxidation of tocopherols. Correlation between singlet oxygen reactivity and vitamin E activity, Biochemistry, 11:606.PubMedCrossRefGoogle Scholar
  68. Haun, M., Duran, N., and Cilento, G., 1978, Energy transfer from enzymically generated triplet compounds to the fluorescent state of flavins, Biochem. Biophys. Res. Commun., 81:779.PubMedCrossRefGoogle Scholar
  69. Heikkila, R.E., and Cabbat, F.S., 1978, Chemiluminescence from autoxidizing 6-hydroxydop amine. The involvement of active forms of oxygen, Photochem. Photobiol., 28:667.CrossRefGoogle Scholar
  70. Howard, J.A., and Ingold, K.U., 1968, Rate constants for the self-reactions of n- and sec-butyl peroxy radicals and cyclohexylperoxy radicals. The deuterium isotope effect in the termination of secondary peroxy radicals, J. Am. Chem. Soc., 90:1056.CrossRefGoogle Scholar
  71. Inbar, S., Linschitz, H., and Cohen, S.G., 1982, Quenching and radical formation in the reaction of photoexcited benzophenone with thiols and thioethers (sulfides). Nanosecond flash studies, J.Am. Chem. Soc., 104:1679.CrossRefGoogle Scholar
  72. Kanofsky, J.R., 1983, Singlet oxygen production by lactoperoxidase. Evidence from 1270 nm chemiluminescence, J. Biol. Chem., 258:5991.PubMedGoogle Scholar
  73. Kanofsky, J.R., 1984a, Singlet oxygen production by lactoperoxidase: halide dependence and quantitation of yield,J. Photochem., 25:285.CrossRefGoogle Scholar
  74. Kanofsky, J.R., 1984b, Singlet oxygen production by chloroperoxidase-hydrogen peroxide-halide systems,J.Biol. Chem., 259:5596.PubMedGoogle Scholar
  75. Kellog, R.E., Mechanism of chemiluminescence from peroxy radicals, 1969,J.Am. Chem. Soc., 91:5433.CrossRefGoogle Scholar
  76. Kepka, A.G., and Grossweiner, L.I., 1973, Photodynamic inactivation of lysozime by eosin, PHotochem. Photobiol., 18:49.PubMedCrossRefGoogle Scholar
  77. Khan, A.U., 1981, Direct spectral evidence of the generation of singlet molecular oxygen in the reaction of potassium superoxide with water,J.Am. Chem. Soc., 103:6516.CrossRefGoogle Scholar
  78. Khan, A.U., 1983, Enzyme system generation of singlet molecular oxygen observed directly by 1.0–1.8μm luminescence spectroscopy,J.Am. Chem. Soc., 105:7195.CrossRefGoogle Scholar
  79. Khan, A.U., 1984a, Discovery of enzyme generation of 1Δg molecular oxygen: spectra of (0,0)1Δg → 3Σg- IR emission,J.Photochem., 25:327.CrossRefGoogle Scholar
  80. Khan, A.U., 1984b, Myeloperoxidase singlet oxygen generation detected by direct infrared emission, Biochem. Biophys. Res. Commun., 122:668.PubMedCrossRefGoogle Scholar
  81. Khan, A.U., and Kasha, M., 1970, Chemiluminescence arising from simultaneous transitions in pairs of singlet oxygen molecules,J.Am. Chem. Soc., 92:3293.CrossRefGoogle Scholar
  82. Koka, P., and Song, P.-S., 1978, Protection of chlorophyll-a by carotenoid from photodynamic decomposition, Photochem. Photobiol., 28:509.CrossRefGoogle Scholar
  83. Koppenol, W.H., 1976, Reactions involving singlet oxygen and superoxide anion, Nature (London), 262:420.CrossRefGoogle Scholar
  84. Kraljic, I., and Sharpatyi, V.A., 1978, Determination of singlet oxygen rate constants in aqueous solutions, Photochem. Photobiol., 28:583.CrossRefGoogle Scholar
  85. Krasnovsky, A.A., Jr., Kagan, V.E., and Minin, A.A., 1983, Quenching of singlet oxygen luminescence by fatty acids and lipids. Contribution of physical and chemical mechanisms, FEBS Lett., 155:233.CrossRefGoogle Scholar
  86. Krinsky, N.I., 1979, Biological roles of singlet oxygen, in “Singlet Oxygen”, H.H. Wasserman and W.A. Murray, eds., p. 597, Academic Press, New York.Google Scholar
  87. Krinsky, N.I., 1982, Photobiology of carotenoid protection, in “The Science of Photomedicine”, J.D. Regan and J.A. Parrish, eds., p. 397, Plenum Press, New York.CrossRefGoogle Scholar
  88. Marnett, L.J., Slodawer, P., and Samuelsson, B., 1974, Light emission during the action of prostaglandin synthase, Biochem. Biophys. Res. Commun., 60:1286.PubMedCrossRefGoogle Scholar
  89. Matheson, I.B.C., 1979, The absolute value of the reaction rate constant of bilirrubin with singlet oxygen in D2O, Photochem. Photobiol., 29:875.CrossRefGoogle Scholar
  90. Matheson, I.B.C., Etheridge, R.D., Kratowich, N.R., and Lee, J., 1975, The quenching of singlet oxygen by amino acids and proteins, Photochem. Photobiol., 21:165.PubMedCrossRefGoogle Scholar
  91. Matheson, I.B.C., and Lee, J., 1979, Chemical reaction rates of aminoacids with singlet oxygen, Photochem. Photobiol., 29:879.CrossRefGoogle Scholar
  92. McCarthy, M.-B., and White, R.E., 1983, Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate,J.Biol. Chem., 258:9153.PubMedGoogle Scholar
  93. Meneghini, R., Hoffman, M.E., Duran, N., Faljoni, A., and Cilento, G., 1978, DNA damage during the peroxidase-catalyzed aerobic oxidation of isobutanal, Biochem. Biophys. Acta, 18:177.Google Scholar
  94. Merenyi, G., Lind, J., and Eriksen, T.E., 1985, The reactivity of superoxide (math) and its ability to induce chemiluminescence with luminol, Photobiol. Photochem., 41:203.CrossRefGoogle Scholar
  95. Miyazawa, T., Kaneda, T., Takyu, C., and Inaba, H., 1983a, Characteristics of tissue ultraweak chemiluminescence in rats fed with autoxidized linseed oil, J. Nutr. Sci. Vitaminol., 29:53.PubMedCrossRefGoogle Scholar
  96. Miyazawa, T., Kaneda, T., Takyu, C., Yamagishi, A., and Inaba, H., 1981, Generation of singlet molecular oxygen in rat liver homogenate on adding autoxidized linseed oil, Agric. Biol. Chem., 45:1597.CrossRefGoogle Scholar
  97. Miyazawa, T., Nagaoka, A., and Kaneda, T., 1983b, Tissue lipid peroxidation and ultraweak chemiluminescence in rats dosed with methyl linoleate hydroperoxide, Agric. Biol. Chem., 47:1333.CrossRefGoogle Scholar
  98. Miyazawa, T., Sato, C., and Kaneda, T., 1983c, Antioxidative effects of alpha-tocopherol and riboflavin-butyrate in rats dosed with methyl linoleate hydroperoxide, Agric. Biol. Chem., 47:1577.CrossRefGoogle Scholar
  99. Miyazawa, T., Tsuchiya, K., and Kaneda, 1984, Riboflavin tetrabutyrate: an antioxidative synergist of alpha-tocopherol as estimated by hepatic chemiluminescence, Nutr. Rep. Internat., 29:157.Google Scholar
  100. Nakano, M., and Noguchi, T., 1977, Mechanism of the generation of singlet oxygen in NADPH-dependent microsomal lipid peroxidation, in “Biochemical and Medical Aspects of Active Oxygen”, O. Hayaishi and K. Asada, eds., p. 29, University of Tokyo Press, Tokyo.Google Scholar
  101. Nassi, L., and Cilento, G., 1983, Red emission from chloroplasts elicited by enzyme-generated triplet acetone and triplet indole-3-aldehyde, Photochem. Photobiol., 37:233.CrossRefGoogle Scholar
  102. Nilsson, R., Merkel, P.B., and Kearns, D.R., 1972, Unambiguous evidence for the participation of singlet oxygen in photodynamic oxidation of amino acids, Photochem. Photobiol., 16:117.PubMedCrossRefGoogle Scholar
  103. Ozawa, T., and Hanaki, A., 1983, Reactions of superoxide ion with tocopherol and its model compounds: correlation between the physiological activities of tocopherol and the concentration of chromanoxyl-type radicals, Biochem. Intern., 6:685.Google Scholar
  104. Peters, G., and Rodgers, M.A.J., 1980, On the feasibility of electron transfer to singlet oxygen from mitochondrial components, Biochem. Biophys. Res. Commun., 96:770.PubMedCrossRefGoogle Scholar
  105. Quickenden, T.I., Comarmond, M.J., and Tilbury, R.N., 1985, Ultraweak bioluminescence spectra of stationary phase growth of Saccharomyces cerevisiae and Schizosaccharomyces pombe, Photochem. Photobiol., 41:611.PubMedCrossRefGoogle Scholar
  106. Rivas-Suarez, E., and Cilento, G., 1981, Quenching of enzyme-generated acetone phosphorescence by indole compounds: stereospecific effects of D- and L-tryptophan. Photochemical-like effects, Biochemistry, 20:7329.PubMedCrossRefGoogle Scholar
  107. Rooney, M.L., 1983, Ascorbic acid as a photooxidation inhibitor, Photochem. Photobiol., 38:619.CrossRefGoogle Scholar
  108. Russell, G.A., 1957, Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons. Mechanism of the interaction of peroxy radicals, J. Am. Chem. Soc., 79:3871.CrossRefGoogle Scholar
  109. Salin, M.L., Quince, K.L., and Hunter, D.J., 1985, Chemiluminescence from mechanically-injured soybean root tissue, Photobiochem. Photobiophys., 9:271.Google Scholar
  110. Schuchart, H., and Nultsch, W., 1984, Possible role of singlet molecular oxygen in the control of the phototactic reaction sign of Anabaena variabilis,J.Photochem., 25:317.CrossRefGoogle Scholar
  111. Schulte-Herbrüggen, T., and Cadenas, E., 1985a, Electronically excited state generation during the lipoxygenase-catalyzed aerobic oxidation of arachidonate. The effect of reduced glutathione, Photobiochem. Photobiophys., 10:35.Google Scholar
  112. Schulte-Herbriiggen, T., and Cadenas, E., 1985b, Formation of electronically excited states during the lipoxygenase-catalyzed oxidation of fatty acids with different degree of unsaturation, in “Free Radicals in Liver Injury”, M.U. Dianzani, G. Poli, T.F. Slater, and K.H. Cheeseman, eds., p. 91, IRL Press Ltd, Oxford.Google Scholar
  113. Seliger, H.H., 1960, A photoelectric method for the measurement of spectra of light sources of rapidly varying intensities, Anal. Biochem., 1:60.PubMedCrossRefGoogle Scholar
  114. Seliger, H.H., Thompson, A., Hamman, J.P., and Poser, G.H., 1982, Chemiluminescence of benzo(a)pyrene-7,8-diol, Photochcm. Photobiol., 36:359.CrossRefGoogle Scholar
  115. Shenck, G.O., Gollnick, K., and Neumüller, O.A., 1957, Zur photosensitilisierten Autoxydation der Steroide. Darstellung von Steroid-Hydroperoxiden mittels phototoxischer Photosensitilisatoren, Ann. Chem., 603:46.CrossRefGoogle Scholar
  116. Singh, H., and Ewing, D.D., 1978, Methylene blue sensitized photoinactivation of E. Coli Ribosomes: effect on the RNA and protein components, Photochem. Photobiol., 28:547.PubMedCrossRefGoogle Scholar
  117. Singh, H., and Vadasz, J.A., 1978, Singlet oxygen: a major reactive species in the furocoumarin photosensitized inactivation of E. coli ribosomes, Photochem. Photobiol., 28:539.PubMedCrossRefGoogle Scholar
  118. Slawinska, D., 1978, Chemiluminescence and the formation of singlet oxygen in the oxidation of certain polyphenols and quinones, Photochem. Photobiol., 28:453.CrossRefGoogle Scholar
  119. Slawinska, D., and Slawinski, J., 1973, Chemiluminescence in the oxidation reactions of some quinones and their polymers. I. Characteristics of reactions and luminescence, in “Chemiluminescence and Bioluminesence”, M.C. Cormier, D.M. Hercules, and J. Lee, eds., p. 490, Plenum Press, New York.Google Scholar
  120. Slawinska, D., and Slawinski, J., 1983, Biological chemiluminescence, Photochem. Photobiol., 37:709.CrossRefGoogle Scholar
  121. Slawinski, J., Galezowiski, W., and Elbanowski, 1981, Chemiluminescence in the reaction of cytochrome c with hydrogen peroxide, Biochim. Biophys. Acta, 637:130.PubMedCrossRefGoogle Scholar
  122. Smith, G.J., 1978, Photooxidation of tryptophan sensitized by methylene blue, J. Chem. Soc. Faraday Trans. 2, 74:1350.Google Scholar
  123. Smith, G.J., 1983, Reaction of retinol and retinal with singlet oxygen, Photochem. Photobiol., 38:119.CrossRefGoogle Scholar
  124. Snyakin, A.P., Samsonava, L.V., Shlyapinkokh, V.Ya., and Ershov, V.v., 1978, Kinetics and mechanism of the interaction of sterically-hindered phenol with singlet oxygen, Bull. Acad. Sci. USSR Div. Chem. Sci., 27:46.CrossRefGoogle Scholar
  125. Stauff, J., and Bartolmes, P., 1970, Chemilumineszenz bei der oxidativen bildung von triplettzuständen des anthrasemichinon- und anthrachinon-2-sulfonats, Angew. Chem., 82:321.CrossRefGoogle Scholar
  126. Stauff, J., Schmidkunz, H., and Hartmann, G., 1963, Weak chemiluminescence of oxidation reactions, Nature, 198:281.CrossRefGoogle Scholar
  127. Stevens, B., 1973, Kinetics of photoperoxidation in solution, Acc. Chem. Res., 6:90.CrossRefGoogle Scholar
  128. Thompson, A., Seliger, H.H., and Posner, G.H., 1983, A chemiluminescence assay specific for the microsomal metabolite benzo(a)pyrene-7,8-dihydrodiol, Anal. Biochem., 130:498.PubMedCrossRefGoogle Scholar
  129. Trush, M.A., Mimnaugh, E.G., Siddik, Z.H., and Gram, T.E., 1963, Bleomycinmetal interaction: ferrous iron-initiated chemiluminescence, Biochem. Biophys. Res. Commun., 112:378.CrossRefGoogle Scholar
  130. Ullrich, V., 1977, in The mechanism of cytochrome P-450 action, “Microsomes and Drug Oxidations”, V. Ullrich, I. Roots, A. Hildebrandt, R.O. Estabrook, and A.H. Conney, eds., p. 192, Plenum Press, New York.Google Scholar
  131. Villabianca, M., and Cilento, G., 1985, Enzymatic generation of electronic excited states by electron transfer, Photochem. Photobiol., 42:591.CrossRefGoogle Scholar
  132. Vladimirov, Yu.A., Olenev, V.I., Suslova, T.B., and Cheremesina, Z.P., 1980, Lipid peroxidation in mitochondrial membrane, Adv. Lip. Res., 17:173.Google Scholar
  133. Vidigal, C.C.C., Faljoni-Alario, A., Duran, N., Zinner, K., Shimizu, Y., and Cilento, G., 1979, Electronically excited species in the peroxidase-catalyzed oxidation of indole-3-acetic acid: effect upon DNA and RNA, Photochem. Photobiol., 30:195.CrossRefGoogle Scholar
  134. Wagner, P.J., 1971, Type II photoelimination and photocyclization of ketones, Acc. Chem. Res., 4:168.CrossRefGoogle Scholar
  135. Wefers, H., and Sies, H., 1983, Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate. Relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity, Arch. Biochem. Biophys., 224:568.PubMedCrossRefGoogle Scholar
  136. Weil, 1965, On the mechanism of the photooxidation of aminoacids sensitized by methylene blue, Arch. Biochem. Biophys., 110:57.PubMedCrossRefGoogle Scholar
  137. White, E.H., Miano, J.D., Watkins, C.J., and Breaux, E.J., 1974, Chemical excited states, Angew. Chem., 13:229.CrossRefGoogle Scholar
  138. White, E.H., and Wei, C.C., 1970, A possible role for chemically-produced excited states in biology, Biochem. Biophys. Res. Commun., 39:1219.PubMedCrossRefGoogle Scholar
  139. Wu, K.C., and Trozzolo, A.M., 1979, Evidence for the production of singlet molecular oxygen from the quenching of excited states of dialkyl ketones by molecular oxygen,J.Photochem., 10:407.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Enrique Cadenas
    • 1
  1. 1.Department of Pathology IILinköping UniversityLinköpingSweden

Personalised recommendations