The Autoxidation of Polyunsaturated Lipids

  • Ned A. Porter
  • Dennis G. Wujek


The gradual accumulation of oxygen which accompanied the evolution of photosyn-thetic organisms approximately 1.5 billion years ago was most significant in that an appropriate environment had been provided for the genesis of aerobic organisms. Along with the evolution of respiratory organisms emerged a most interesting irony. The very molecular oxygen which had always been an agent of biological degradation became a vital commodity to the sustainment of life. That which had supported the lives of respiring organisms was also toxic to them, and it was only by virtue of the development of elaborate defense mechanisms that survival was made possible.


Molecular Oxygen Peroxy Radical Linoleate Hydroperoxide Hydrogen Atom Abstraction Epoxy Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autor, A.P., 1984, in “The Biology and Chemistry of Active Oxygen,” p. 140, J.V. Bannister and W.H. Bannister, eds., Elsevier, New York.Google Scholar
  2. Baldwin, D.A., Marques, H.M., and Pratt, J.M., 1985, FEBS Lett, 188 (2), p. 309.Google Scholar
  3. Bannister, W.H., 1984, in “The Biology and Chemistry of Active Oxygen,” pp. 217–219, J.V. Bannister and W.H. Bannister, eds., Elsevier, New York.Google Scholar
  4. Bascetta, E., Gunstone, F.D., and Walton, J.C., 1983, J. Chem. Soc., Perkin Trans. II, 603.Google Scholar
  5. Beckman, J.K., Gray, J.C., Brash, A.R., Lukens, J.N., and Oates, J.A., 1985, Lipids, 20(6):357.PubMedCrossRefGoogle Scholar
  6. Beckwith, A.L., and Ingold, K.U., 1980, “Rearrangements in Ground and Excited States,” 1, 161, P. De Mayo, ed., Academic Press, New York.Google Scholar
  7. Bohinski, R.C., 1979, “Modern Concepts in Biochemistry,” 3rd ed., pp. 316–344, Allyn and Bacon, Boston.Google Scholar
  8. Bors, W., Saran, M., and Tait, D., eds., 1984, “Oxygen Radicals in Chemistry and Biology,” pp. 137–145 and pp. 285–297, de Gruyter, Berlin.Google Scholar
  9. Burton, G.W., Cheeseman, K.H., Doba, T., Ingold, K.U., and Slater, T.F., 1983, in Ciba Found. Symp., 101 (Biol Vitam. E), pp. 4–18.Google Scholar
  10. Burton, G.W., Hughes, L., and Ingold, K.U., 1983, J. Am. Chem. Soc., 105:5950.CrossRefGoogle Scholar
  11. Chambers, D.E., Parks, D.A., Patterson, G., Roy, R., McCord, J.M., Yoshida, S., Parmley, L.F., and Downey, J.M., 1985, J. Mol. Cell. Cardiol., 17(2):145.PubMedCrossRefGoogle Scholar
  12. Chan, H.W.-S., and Levett, G., 1977, Lipids, 12:99.PubMedCrossRefGoogle Scholar
  13. Chan, H.W.-S., Levett, G., and Matthew, J.A., 1979, Chem. Phys. Lipids, 24:245.CrossRefGoogle Scholar
  14. Corey, E.J., Shimoji, K., and Shih, C., 1984, J. Am. Chem. Soc., 106:6425.CrossRefGoogle Scholar
  15. Curnutte, J.T., Shitten, D.M., and Babior, B.M., 1974, N. Engl. J. Med., 290:593.PubMedCrossRefGoogle Scholar
  16. Davies, A.G., Griller, D., Ingold, K.U., Lindsay, D.A., and Walton, J.C., 1981, J. Chem. Soc., Perkin Trans. II, 633.Google Scholar
  17. de Groot, J.J.M.C., Veldink, G.A., Vliegenthart, J.F.G., Boldingh, J., Wever, R., and van Gelder, B.F., 1975, Biochim. Biophys. Acta, 377:71.PubMedCrossRefGoogle Scholar
  18. Diplock, A.T., 1983, in Ciba Found. Symp., 101 (Biol. Vitam. E), pp. 45–55.Google Scholar
  19. Dogra, S.C., Khanduja, K.L., Gupta, M.P., and Sharma, R.R., 1985, Ind. J. Med. Res., 81:520.Google Scholar
  20. Egmond, M.R., Vliegenthart, J.F.G., and Boldingh, J., 1972, Biochim. Biophys. Res. Comm., 48:1055.CrossRefGoogle Scholar
  21. El-Far, M.A., and Pimstone, N.R., 1985, Cell. Biochem. Fund, 3(2):115.CrossRefGoogle Scholar
  22. Fridovich, I., 1984, in “The Biology and Chemistry of Active Oxygen,” pp. 128–138, J.V. Bannister and W.H. Bannister, eds., Elsevier, New York.Google Scholar
  23. Fridovich, I., 1981, in “Oxygen and Oxy-radicals in Chemistry and Biology,” pp. 197–204, M.A.J. Rodgers and E.L. Powers, eds., Academic Press, New York.Google Scholar
  24. Fridovich, I., 1979, in “Oxygen Free Radicals and Tissue Damage,” Ciba Found. Symp. 65, pp. 1–4, Excerpta Medica, Amsterdam.Google Scholar
  25. Fridovich, I., 1976, in “Free Radicals in Biology,” 1:249, W.A. Pryor, ed., Academic Press, New York.Google Scholar
  26. Frew, J.E., and Jones, P., 1984, Adv. Inorg. Bioinorg. Mech., 3:175.Google Scholar
  27. Griller, D., and Ingold, K.U., 1980, Ace. Chem. Res., 13:317.CrossRefGoogle Scholar
  28. Griller, D., Ingold, K.U., and Walton, J.C., 1979, J. Am. Chem. Soc., 101:758.CrossRefGoogle Scholar
  29. Gryglewski, R.J., Szczeklik, A., and McGill, J.C., eds., 1985, “Prostacyclin Clinical Trials,” Raven Press, New York.Google Scholar
  30. Gutteridge, J.M.C., 1984, FEBS Lett, 172(2):245.PubMedCrossRefGoogle Scholar
  31. Harman, D., 1985, Age (Omaha, NE), 7(4):111.CrossRefGoogle Scholar
  32. Hess, M.L., and Manson, N.H., 1985, J. Moi. Cell. Cardiol, 16(11):969.CrossRefGoogle Scholar
  33. Holman, R.T., ed., 1971, “Progress in the Chemistry of Fats and Other Lipids,” V. 9, Pergamon Press, Oxford.Google Scholar
  34. Howard, J.A., 1973, in “Free Radicals,” V. 2, pp. 3–62, J.K. Kochi, ed., Wiley (Interscience), New York.Google Scholar
  35. Howard, J.A., Ingold, K.U., and Symonds, M., 1968, Can. J. Chem., 46:1017.CrossRefGoogle Scholar
  36. Howard, J.A., and Ingold, K.U., 1967, Can. J. Chem., 45:793.CrossRefGoogle Scholar
  37. Ingold, K.U., 1969, Acc. Chem. Res., 2:1.CrossRefGoogle Scholar
  38. Jauhonen, V.P., Baraona, E., Lieber, C.S., and Hassinen, I.E., 1985, Alcohol, 2(1):163.PubMedCrossRefGoogle Scholar
  39. Kubow, S., Bray, T.M., and Janzen, E.G., 1985, Biochem. Pharmacol., 34(7):1117.PubMedCrossRefGoogle Scholar
  40. Kurisaki, E., 1985, J. Toxicol. Sci., 10(1):29.PubMedCrossRefGoogle Scholar
  41. Menzel, D.B., 1976, in “Free Radicals in Biology,” V. 2, p. 192, W.A. Pryor, ed., Academic Press, New York.Google Scholar
  42. Nelson, N.A., Kelley, R.C., and Johnson, R.A., August 16, 1982, Chem. & Eng. News, p. 30.Google Scholar
  43. O’Connor, D.E., Mihelich, E.D., and Coleman, M.C., 1984, J. Am. Chem. Soc., 106:8577. Google Scholar
  44. Pace-Asciak, C., Granström, E., eds., 1983, “Prostaglandins and Related Substances,” pp. 50–52, Elsevier, New York.Google Scholar
  45. Peskar, B.A., Zimmerman, I., and Ulmer, W.T., 1984, Klin. Wochenschr., 62(7):315.PubMedCrossRefGoogle Scholar
  46. Pike, J.E., and Morton, Jr., D.R., eds., 1985, “Advances in Prostaglandin, Thromboxane, and Leukotriene Research,” V. 14, pp. 156–157, Raven Press, New York.Google Scholar
  47. Porter, N.A., Zuraw, P.J., and Sullivan, J.A., 1984, Tet. Lett, 25:807.CrossRefGoogle Scholar
  48. Porter, N.A., Lehman, L.S., Weber, B.A., and Smith, K.J., 1981, J. Am. Chem. Soc., 103:6447.CrossRefGoogle Scholar
  49. Porter, N.A., Weber, B.A., Weenen, H., and Khan, J.A., 1980, J. Am. Chem. Soc., 102:5597.CrossRefGoogle Scholar
  50. Pryor, W.A., Prier, D.G., Lightsey, J.W., and Church, D.F., 1980, in “Autoxidation in Food and Biological Systems,” pp. 1–16, M.G. Simic and M. Karel, eds., Plenum Press, New York.Google Scholar
  51. Roberts, D.H., 1982, Ph.D. Dissertation, Duke University, pp. 16, 155.Google Scholar
  52. Rosen, G.M., and Freeman, B.A., 1985, Proc. Natl. Acad. Sci. USA, 81(23):7269.CrossRefGoogle Scholar
  53. Russell, G.A., 1957, J. Am. Chem. Soc., 79:3871.CrossRefGoogle Scholar
  54. Samuelsson, B., 1983, Science, 220:568.PubMedCrossRefGoogle Scholar
  55. Samuelsson, B., 1983, Angew, Chem. Int. Engl. Ed., 22:816.CrossRefGoogle Scholar
  56. Sharabani, M., Plotkin, B., and Aviram, I., 1984, Cell. Mol. Biol., 30(4):329.PubMedGoogle Scholar
  57. Sinha, B.K., Trush, M.A., and Kalyanaraman, B., 1985, Biochem. Pharmacol., 34(11):2036.PubMedCrossRefGoogle Scholar
  58. Sirois, P., Borgeat, P., and Jeanson, A., 1981, J. Pharm. Pharmacol., 33:466.PubMedCrossRefGoogle Scholar
  59. Slappendel, S., Veldink, G.A., Vliegenthart, J.F.G., Aasa, R., and Malstrom, B.G., 1981, Biochim. Biophys. Acta, 667:77.PubMedCrossRefGoogle Scholar
  60. Stryer, L., 1981, “Biochemistry,” 2nd ed., pp. 186–187, 205–209, W.H. Freeman and Co., New York.Google Scholar
  61. Stuart, R.S., Baumgartner, W.A., Borkon, A.M., Bulkley, G.B., Brawn, J.D., De La Monte, S.M., Hutchins, G.M., and Reitz, B.A., 1985, Transplant. Proc., 17(1, Bk. 2):1454.Google Scholar
  62. Thomas, M.J., and Pryor, W.A., 1980, Lipids, 15:544.CrossRefGoogle Scholar
  63. Vanduijn, G., Verkleij, A.J., and Dekruijf, B., 1984, Biochem., 23:4969.CrossRefGoogle Scholar
  64. Warson, M.A., and Lands, W.E.M., 1983, Br. Med. Bull., 39(3):277.Google Scholar
  65. Williams, R.J.P., 1984, in “The Biology and Chemistry of Active Oxygen,” pp. 1–15, J.V. Bannister and W.H. Bannister, eds., Elsevier, New York.Google Scholar
  66. Yamamoto, Y., Niki, E., and Kamiya, Y., 1982, Lipids, 17:870.CrossRefGoogle Scholar
  67. Zuraw, P.J., 1985, Ph.D. Dissertation, Duke University.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ned A. Porter
    • 1
  • Dennis G. Wujek
    • 1
  1. 1.Paul M. Gross Chemical LaboratoriesDuke UniversityDurhamUSA

Personalised recommendations