Group IIIA radiopharmaceuticals

  • Azuwuike Owunwanne
  • Mohan Patel
  • Samy Sadek


The elements of group IIIA which have useful radionuclides for imaging are gallium, indium and thallium. Being group III elements, they have three electrons in their outermost shells. Hence, in aqueous solution, they can exist in the +1, +2 or +3 oxidation state. However, at neutral or plasma pH their common salts, particularly those of gallium and indium, are insoluble, and if the ionic form (Ga3+ or In3+) is added to water it hydrolyzes very easily. To stabilize them, they are complexed to ligands such as citrate and oxine. Thallium in the +1 oxidation state is stable in aqueous medium and is administered intravenously as thallous chloride. The radiopharmaceuticals of gallium-67, indium-111 and thallium-201 are described in this chapter.


Parathyroid Adenoma Solvent Front Dose Calibrator Isopropyl Ether ICRP Publication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Owunwanne, A., O’Mara, R.E., Blau, M. et al. (1979) Ion exchange methods for the determination of the net charge on some radiopharmaceuticals, in Radiopharmaceuticals, Vol. II (ed. J.A. Sorensen), The Society of Nuclear Medicine, New York, pp. 163–72.Google Scholar
  2. 2.
    Harris, W.R. and Martell, A.E. (1976) Aqueous complexes of gallium (III). Inorg. Chem., 15, 713–20.CrossRefGoogle Scholar
  3. 3.
    Glickson, J.D., Pitner, T.P., Webb, J. et al (1975) Hydrogen-1 and gallium-71 nuclear magnetic resonance study of gallium citrate in aqueous solution. J. Am. Chem. Soc, 97, 1679–83.CrossRefGoogle Scholar
  4. 4.
    Dahl, J.R. and Tilbury, R.S. (1972) The use of compact, multi-particle cyclotron for the production of 52Fe, 67Ga, 111In and 123I for medical purposes. Int. J. Appl Radiat, Iso., 23, 431–37.CrossRefGoogle Scholar
  5. 5.
    Frier, M. and Hesslewood, S.R. (1980) Quality assurance of radiopharmaceuticals. A guide to hospital practice. Nucl. Med. Commun., 1, 29.Google Scholar
  6. 6.
    Stephton, R.G. and Harris, W. (1974) Gallium-67 uptake by cultured tumor cells, stimulated by transferrin. J. Natl Cancer Inst., 54, 1263–66.Google Scholar
  7. 7.
    Harris, A.W. and Stephton, R.G. (1977) Transferrin promotion of 67Ga and 59Fe uptake by cultured mouse myeloma cells. Cancer Res., 37, 3634–38.Google Scholar
  8. 8.
    Hoffer, P.B., Huberty, J.P. and Khayam Bashi, H. (1977) The association of 67Ga and lactofer-rin, J. Nucl. Med., 18, 713–17.Google Scholar
  9. 9.
    Terner, U.K., Wong, H., Noujaim, A. et al (1979) Differential uptake of 67Ga in cannine tumors and abscesses, in Radiopharmaceuticals Vol. II (ed. J.A. Sorensen), The Society of Nuclear Medicine, New York, pp. 309–19.Google Scholar
  10. 10.
    Nelson, B., Hayes, R.L., Edwards, C.L. et al (1972) Distribution of gallium in human tissues after intravenous administration. J. Nucl Med., 13, 92–100.Google Scholar
  11. 11.
    Cloutier, R.J., Watson, E.E., Hayes, R.L. et al (1971) Radiation doses from isotopes of gallium (abstract). J. Nucl. Med., 12, 348.Google Scholar
  12. 12.
    Watson, E.E. (1992) Radiation dose estimates for the fetus from intakes of gallium citrate by the mother. Radiat. Prot. Dos., 41, 123–26.Google Scholar
  13. 13.
    Hartman, R.E. and Hayes, R.L. (1969) The binding of gallium by blood serum. J. Pharmacol Exp. Ther., 168, 193–98.Google Scholar
  14. 14.
    Edwards, C.L., Hayes, R.L., Nelson, B.M. et al (1970) Clinical investigation of 67Ga for tumor scanning. J. Nucl. Med., 11, 316–17.Google Scholar
  15. 15.
    Rubon, S.M., Klopper, J. and Scholtz, P. (1991) Excretion of gallium-67 in human breast and its inadvertent ingestion by a 9 month old child. Eur. J. Nucl. Med., 18, 829–33.Google Scholar
  16. 16.
    Cloutier, R.J., Watson, E.E., Hayes, R.L. et al (1973) Summary of current radiation dose estimates to humans from 66Ga, 67Ga, 68Ga and 72Ga-citrate. MIRD dose estimate report no. 2. J. Nucl. Med., 14, 755–56.Google Scholar
  17. 17.
    Product Information (1992) Indium [111In] chloride. Amersham International, UK.Google Scholar
  18. 18.
    Goodwin, D.A., Song, C.H., Finston, R. and Matin, P. (1973) Preparation, physiology and dosimetry of 111In-labeled radiopharmaceuticals for cisternography. Radiology, 108, 91–8.Google Scholar
  19. 19.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon Press, Oxford, pp. 237–38.Google Scholar
  20. 20.
    Thakur, M.L., Coleman, R.E. and Welch, M.J. (1977) Indium-111-labeled leukocytes for the localization of abscesses: preparation, analysis, tissue distribution, and comparison with gallium-67 citrate in dogs. J. Lab. Clin. Med., 89, 217–28.Google Scholar
  21. 21.
    Dewanjee, M.K., Rao, S.A. and Didisheim, P. (1981) Indium-111-tropolone, a new high affinity label. Preparation and evaluation of labeling parameters. J. Nucl Med., 22, 981–87.Google Scholar
  22. 22.
    Thakur, M.L., Segal, A.W., Louis, L. et al (1977) Indium-111 labeled cellular blood components: mechanism of labeling and intracellular location in human neutrophils. J. Nucl. Med., 18, 1020–24.Google Scholar
  23. 23.
    Thakur, M.L., Lavender, J.P., Rosemary, N. et al. (1977) Indium-111 labeled autolo-gus leukocytes in man. J. Nucl. Med., 18, 1014–19.Google Scholar
  24. 24.
    Peters, A.M., Sethna, H.S., Reavy, H.J. et al. (1983) Imaging of inflammation with 111In-tropolone labeled leukocytes. J. Nucl. Med., 24, 29–44.Google Scholar
  25. 25.
    Danpure, H.J. and Osman, S. (1988) Optimum conditions for radiolabeling human granulocytes and mixed leucocytes with 111In-tropolonate. Eur. J. Nucl Med., 13, 537–42.CrossRefGoogle Scholar
  26. 26.
    Mountford, P.J. and Coakley, A.J. (1985) Excretion of radioactivity in breast milk after an In-111 leucocyte scan (letter). J. Nucl. Med., 26, 1096–97.Google Scholar
  27. 27.
    Kotze, H., Heys, A.P., Lotter, M.G. et al. (1991) Comparison of oxine and tropolone methods for labeling human platelets with Indium-111. J. Nucl Med., 32, 62–6.Google Scholar
  28. 28.
    Wessels, P., Heyns, A., Pieters, H. et al (1985) An improved method of the in vivo kinetics of a representative population of 111In-labeled platelets. Eur. J. Nucl. Med., 10, 522–27.CrossRefGoogle Scholar
  29. 29.
    International Committee for Standardisation in Hematology (1988) Panel report on diagnostic applications of radionuclides. Recommended method for In-111-platelet survival studies. J. Nucl. Med., 29, 564–66.Google Scholar
  30. 30.
    ICRP Publication 53 (1990) Radiation dose to patients from radiopharmaceuticals, Pergamon Press, Oxford, pp. 255–56.Google Scholar
  31. 31.
    IRCP Publication 53 (1990) Radiation dose to patients from radiopharmaceuticals, Pergamon Press, Oxford, pp. 253–54.Google Scholar
  32. 32.
    Lebowitz, E., Greene, M.W., Fairchild, R. et al (1975) Thallium-201 for medical use. Part 1. J. Nucl. Med., 16, 151–55.Google Scholar
  33. 33.
    Grunwald, A.M., Watson, D.D., Holzgrefe, H.H. et al (1981) Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation, 64, 610–18.CrossRefGoogle Scholar
  34. 34.
    Bradley-Moore, P.R., Lebowitz, E., Greene, M.W. et al. (1975) Thallium-201 for medical use. II. Biological behaviour. J. Nucl. Med., 16, 156–60.Google Scholar
  35. 35.
    Miller, D.L., Doppman, J.L., Shawker, T.H. et al (1987) Localisation of parathyroid adenomas in patients who have undergone surgery. I. Non-invasive imaging methods. Radiology, 162, 133–37.Google Scholar
  36. 36.
    Sahweil, A.M., McKillop, J.M., Milroy, R., Abdel-Dayem, H.M. (1988) Mechanism of T1-201 uptake in tumours (abstract). J. Nucl. Med., 29, 750.Google Scholar
  37. 37.
    Atkins, H.L., Budinger, T.F., Lebowitz, E. et al (1977) Thallium-201 for medical use. Part 3: Human distribution and physical imaging properties. J. Nucl. Med., 18, 133–40.Google Scholar
  38. 38.
    Bartlet, R.D., Lathrop, K.A., Faulhaber, P.F. and Harper, P.V. (1984) Transfer of thallous ion to and from gastrointestinal sections, (abstract) J. Nucl Med., 25, P92.Google Scholar
  39. 39.
    Murphy, P.H., Beasley, C.W., Moore, W.H. and Stabin, M.G. (1988) Tl-201 in human milk (abstract). J. Nucl. Med., 29, 278.Google Scholar
  40. 40.
    Brian, H., Smith, F.W., Smith, T. et al (1993) 99mTc-l, 2-bis [bis (2-ethoxyethyl) phosphinol ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J. Nucl. Med., 34, 30–8.Google Scholar

Copyright information

© Azuwuike Owunwanne, Mohan Patel and Samy Sadek 1995

Authors and Affiliations

  • Azuwuike Owunwanne
    • 1
  • Mohan Patel
    • 2
  • Samy Sadek
    • 3
  1. 1.Department of Nuclear Medicine, Faculty of MedicineKuwait UniversityKuwait
  2. 2.Kuwait Central Radiopharmacy Kuwait Cancer Control CenterMinistry of Public HealthKuwait
  3. 3.Department of Nuclear Medicine Faculty of MedicineKuwait UniversityKuwait

Personalised recommendations