Iodine radiopharmaceuticals

  • Azuwuike Owunwanne
  • Mohan Patel
  • Samy Sadek


Iodine radiopharmacheuticals are labeled mostly with 123I, 125I or 131I. The physical half-lives, decay modes and gamma energies are listed in Table 8.1. The 125I tracers will be discussed under non-imaging radiopharmaceuticals.


Myocardial Imaging Human Breast Milk Lung Uptake Thyroid Uptake Thyroid Metastasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kondo, K., Lambrecht, R.M. and Wolf, A.P. (1977) Iodine-123 production for radiopharmaceuticals. Int. J. Appl. Radiat. Isot., 28, 395.CrossRefGoogle Scholar
  2. 2.
    Lambrecht, R.M., Mantescu, C, Redvanly C. et al. (1972) Preparation of high-purity carrier-free 123I-Iodine monochloride as iodination reagent for synthesis of radiopharmaceuticals. IV. J. Nucl. Med., 13, 224–26.Google Scholar
  3. 3.
    Lagnunas-Solar, M.C. (1982) Cycloton production of high-purity iodine-123 for medical application via the 127I (p, 5n) 123Xe-123I nuclear reaction. Presented at the International Symposium on the developing role of short-lived radionuclides in Nuclear Medicine Practice, Washington DC.Google Scholar
  4. 4.
    Wolf, J., and Maurey, J.R. (1962) Thyroid iodide transport (III). Comparison with anions of periodic group VII A. Biochim. Biophys. Acta, 57, 422–26.CrossRefGoogle Scholar
  5. 5.
    Wolf, J. (1964). Transport of iodide and other anions into the thyroid gland. Physiol. Rev., 44, 45–90.Google Scholar
  6. 6.
    Atkins, H.L. (1975) The thyroid, in Clinical Scintillation Imaging, 2nd edn (eds L.M. Freeman and P.M. Johnson), Grune & Stratton, New York, pp. 671–708.Google Scholar
  7. 7.
    Hodges, R.E., Evans, T.C., Bradbury, J.T. and Keettel, W.C. (1955) The accumulation of radioactive iodine by human fetal thyroids. J. Clin. Endocrinol. Metab., 15, 661–67.CrossRefGoogle Scholar
  8. 8.
    Coakley, J.L., and Mountford, P.J., (1985) Nuclear medicine and nursing mother. BMJ, 291, 159–60.CrossRefGoogle Scholar
  9. 9.
    Mird/dose estimate report No. 5. (1975) Summary of current radiation dose estimates to human from 123I, 124I, 125I, 126I, 130I and 132I as sodium iodide. J. Nucl. Med., 16, 857–60.Google Scholar
  10. 10.
    Mailoux, L. and Gagnon, J.A. (1972) Measurement of effective renal plasma flow, in Progress in Nuclear Medicine, Vol. 2., Evaluation of Renal Function and Disease with Radionuclides, Karger, (Baltimore University Park Press), Basle, pp. 54–70.Google Scholar
  11. 11.
    Taylor, A.T. (1980) Quantitative renal function scanning: a historical and current status report on renal radiopharmaceuticals, in Nuclear Medicine Annual, (eds L.M. Freeman and H.S. Weissman), Raven Press, New York, pp. 303–40.Google Scholar
  12. 12.
    McAfee, J.G., Grossman, Z.D., Gagne, G.R., et al. (1981) Comparison of renal extraction efficiencies for radioactive agents in the normal dog. J. Nucl. Med., 22, 333–38.Google Scholar
  13. 13.
    Stadalnik, R.C., Vogel, J.M., Jansholt, A.L., et al. (1980) Renal clearance and extraction parameters of ortho-iodohippurate (I-123) compared with OIH (I-131) and PAH. J. Nucl Med. 21, 168–70.Google Scholar
  14. 14.
    Taylor, A.T., Eshima, D., Fritzberg, A.R., et al. (1986) Comparison of iodine-131 OIH and technetium MAG3 renal imaging in volunteers. J. Nucl. Med., 27, 795–803.Google Scholar
  15. 15.
    Ahlgreen, L., Ivarsson, S., Johansson, L., et al. (1985) Excretion of radionuclides in human breast milk after the administration of radiopharmaceuticals. J. Nucl. Med. 26, 1085–90.Google Scholar
  16. 16.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergaman Press, Oxford, pp. 306–11.Google Scholar
  17. 17.
    Mertens, J., Vanryckeghem, W., Gysemans, M. et al. (1987) New fast preparation of 123I labelled radiopharmaceuticals. Eur. J. Nucl. Med. 13, 380–81.Google Scholar
  18. 18.
    Holman, B.L., Hill, T.C., and Magistretti, P.L. (1982) Brain imaging with emission computed tomography and radiolabeled amines. Invest. Radiol, 17, 206–15.Google Scholar
  19. 19.
    Kuhl, D.E., Barrio, J.R., Huang, S.C, et al. (1982) Quantifying local cerebral blood flow by N-isopropyl-P-[123I] iodoamphetamine (IMP) tomography. J. Nucl Med., 23, 196–203.Google Scholar
  20. 20.
    Baldwin, R.M., and Wu, J.L. (1988) In vivo chemistry of iofetamine HCI123I (IMP) J. Nucl. Med. 29, 122–24.Google Scholar
  21. 21.
    Winchell, H.S., Horst, W.D., Braun, L. et al (1980) N-Isopropyl [123-I]-P-iodoamphetamine: Single pass brain uptake and washout; binding to brain synaptosomes; and localization in dog and monkey brain. J. Nucl Med. 21, 947–52.Google Scholar
  22. 22.
    Rapin, J.R., Le Poncin-Lafitte, M., Duterte, D. et al. (1983) Radiopharmacologic studies of iso-propyliodoamphetomorine, in Functional Radionuclide Imaging of the Brain, (ed. P.L. Magistretti), Raven Press, New York, pp. 209–16.Google Scholar
  23. 23.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals. Pergamon Press, Oxford, pp. 279–80.Google Scholar
  24. 24.
    Kung, H.F., Tramposch, K.M., and Blau, M. (1983) A new brain perfusion imaging agent: [I-123] HIPDM: N, N, N&3x2019;-trimethyl-N’ [2-hydroxy-3-methyl-5-iodobenzyl]-l, 3-propane diamine. J. Nucl Med., 24, 66–72.Google Scholar
  25. 25.
    Lui, B., Chang, J., Sun, J.S. et al. (1987) Radioactive iodine exchange reaction of HIPDM: Kinetics and mechanism. J. Nucl Med., 28, 360–65.Google Scholar
  26. 26.
    Fazio, F., Lenzi, G.L., Gerundini, P. et al (1984) Tomographic assessment of regional cerebral perfusion using intravenous I-123-HIPDM and a rotating gamma camera. J. Comput. Assist. Tumogr., 8, 911–21.CrossRefGoogle Scholar
  27. 27.
    Kung, H.F. (1988) Iodine labelled brain perfusion imaging agents, in Nuclear Medicine Update (eds S.D.J. Yeh and D.C.P. Chem), The Society of Nuclear Medicine, Taipei, Taiwan, pp. 87–103.Google Scholar
  28. 28.
    Slosman, D.O., Brill, A.B., Polla, B.S., and Alderson, P.O. (1987) Evaluation of [iodine-125] N, N, N’-trimethyl-N’-(2-hydroxy-3-methyl-5-iodobenzyD-l, 3-propanediamine lung uptake using an isolated-perfused lung model. J. Nucl Med., 28, 203–8.Google Scholar
  29. 29.
    Wieland, D.M., Wu, J.L., Brown, L.E. et al (1980) Radiolabeled adrenergic neuron-blocking agents: adrenomedulary imaging with [131I] iodobenzylguanidine. J. Nucl Med. 21, 349–53.Google Scholar
  30. 30.
    Wieland, D.M., Brown, L.E., Tobes, M.C. et al (1981) Imaging the primate adrenal medulla with [123I] and [131I] metaiodobenzylguanidine: concise communication. J. Nucl. Med., 22, 358–64.Google Scholar
  31. 31.
    Wieland, D.M., Brown, L.E., Rogers, W.L. et al (1981) Myocardial imaging with a radio-iodinated norepinephrine storage analog. J. Nucl. Med., 22, 22–31.Google Scholar
  32. 32.
    Kline, R.C., Swanson, D.P., Wieland, D.M. et al (1981). Myocardial imaging in man with 123I-meta-iodobenzylguanidine. J. Nucl Med., 22, 129–32.Google Scholar
  33. 33.
    Nakajo, M., Shapiro, B., Sisson, J.C. et al (1984) Salivary gland accumulation of meta-[131I] iodobenzylguanidine. J. Nucl Med., 25, 2–6.Google Scholar
  34. 34.
    Mangner, T.J., Tobes, M.C., Wieland, D.M. and Sisson, J.C. (1984) Metabolism of 131I-meta-iodobenzylguanidine in humans (abstract). J. Nucl Med., 25, 123.Google Scholar
  35. 35.
    McEwan, A.J., Shapiro, B., Sisson, J.C. et al (1985) Radioiodobenzylguanidine for the scintigraphic location and therapy of adrenergic tumors. Semin. Nucl. Med., 15, 132–53.CrossRefGoogle Scholar
  36. 36.
    Evans, J.R., Gunton, R.W., Baker, R.G. et al (1965) Use of radioiodinated fatty acids for photoscans of the heart. Circ. Res., 16, 1–10.Google Scholar
  37. 37.
    Opie, L.H. (1984) Carbohydrate and lipids, in The Heart: Physiology, Metabolism Pharmacology and Therapy (ed. L.H. Opie), Grune & Strait on, Orlando, FL, pp. 118–35.Google Scholar
  38. 38.
    Morgan, H.E. and Neely, J.R. (1990) Metabolic regulation and myocardial function, in The Heart, Arteries and Veins, 7th edn (eds J.W. Hurst, R.B. Logue and C.E. Rackley), McGraw-Hill, New York, pp. 91–105.Google Scholar
  39. 39.
    Poe, N.D., Robinson, G.D., Zidinski, F.W. et al (1977) Myocardial imaging with 123I-Hexa-decenoic acid. Radiology, 124, 419–24.Google Scholar
  40. 40.
    Vyska, K., Hock, A., Profant, M., et al (1979) Myocardial imaging and measurement of myocardial fatty acid metabolism using zv-1-123 heptadecanoic acid (abstract). J. Nucl. Med., 20, 650.Google Scholar
  41. 41.
    Machulla, H.J., Stocklin, G., Kupfernagel, C.H. et al (1978) Comparative evaluation of fatty acids labeled with C-11, CI-34m, Br-77 and I-123 for metabolic studies of the myocardium: concise communication. J. Nucl. Med., 19, 298–302.Google Scholar
  42. 42.
    Poe, N.D., Robinson, Jr, G.D., Gram, L.S. et al (1976) Experimental basis for myocardialimaging with 123I-labeled hexadecanoic acid. J. Nucl. Med., 17, 1077–82.Google Scholar
  43. 43.
    Machulla, HJ., Marsmann, M. and Dutchka, K. (1980) Biochemical concept and synthesis of a radioiodinated phenyl fatty acid for in vivo metabolic studies of the myocardium. Eur. J. Nucl Med., 5, 171–73.CrossRefGoogle Scholar
  44. 44.
    Elmaleh, D.R., Livini, E., Levy, S. et al. (1983) Comparison of C-11 and C-14 labeled fatty acids and their β-methyl analogs. Int. J. Nucl. Med. Biol, 10, 181–87.CrossRefGoogle Scholar
  45. 45.
    Knapp, E.F., Ambrose, K.R., Callahan, A.P. et al (1981) Effects of chain length and tellurium position on the myocardial uptake of Te-123m fatty acids. J. Nucl Med., 22, 988.Google Scholar
  46. 46.
    Sarkar, S.D., Beierwates, W.H., Rodney, D. et al (1975) A new and superior adrenal scanning agent NP-59. J. Nucl. Med., 16, 1038–42.Google Scholar
  47. 47.
    Ryo, U.Y., Johnston, A.S., Kim, I. and Pinsky, S.M. (1978) Adrenal scanning and uptake with [131I]-iodomethylnorcholesterol. Radiology, 128, 157–61.Google Scholar
  48. 48.
    Carey, J.E., Thrall, J.H., Freitas, J.E., and Beierwaltes, W.H. (1979) Absorbed dose to the human adrenals from [131I]-iodomethyl nor cholesterol ‘NP-59’: concise communication. J. Nucl. Med., 20, 60–2.Google Scholar
  49. 49.
    Kletter, K., Herkner, K., Kallinger, W. and Nowotny, R. (1978) Strahlenbelastung bei Nebennierenszintigraphie mit dem neuen Radiopharmakon I-131-NP-59, in Nuklearmedizin and Biokybernetik (eds K. Oeff and H.A.E. Schmidt), Medico-Informationsdienste, Berlin, pp. 225–230.Google Scholar
  50. 50.
    O’Connor, M.K., Cullen, M.J. and Malone, J.F. (1979) High thyroid radiation dose associated with 131I-iodo cholesterol NP-59 adrenal scanning. Br. J. Radiol, 52, 130–33.CrossRefGoogle Scholar
  51. 51.
    CRP Publication 53 (1990) Radiation dose to patients from radiopharmaceuticals, Pergamon Press, Oxford, pp. 317–18.Google Scholar

Copyright information

© Azuwuike Owunwanne, Mohan Patel and Samy Sadek 1995

Authors and Affiliations

  • Azuwuike Owunwanne
    • 1
  • Mohan Patel
    • 2
  • Samy Sadek
    • 3
  1. 1.Department of Nuclear Medicine, Faculty of MedicineKuwait UniversityKuwait
  2. 2.Kuwait Central Radiopharmacy Kuwait Cancer Control CenterMinistry of Public HealthKuwait
  3. 3.Department of Nuclear Medicine Faculty of MedicineKuwait UniversityKuwait

Personalised recommendations