Technetium-99m radiopharmaceuticals

  • Azuwuike Owunwanne
  • Mohan Patel
  • Samy Sadek


Technetium is a group VIIB transition element which has seven electrons beyond the noble gas electronic configuration. The other members of the group are manganese (Mn) and rhenium (Re); together they form a triad (Mn, Tc, Re). All three elements easily lose the seven electrons to yield the +7 oxidation state of permetallate anions (MnO 4, TcO 4, ReO 4) similar to the perhalate anions of group VIIA (ClO 4, BrO 4,lO 4).


Human Serum Albumin Bladder Wall Parathyroid Adenoma Chicken Liver Dose Calibrator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolff, J. and Maurey, J.R. (1962) Thyroid iodide transport III. Comparison with anions of periodic group VII A. Biochim. Biophys. Acta, 57, 422–26.CrossRefGoogle Scholar
  2. 2.
    Harper, P.V., Lathrop, K.A., Gottschalk, A. et al. (1966) Pharmacodynamics of technetium-99m, in Radioactive Pharmaceuticals (eds G.A. Andrews, R.M. Kinseley and H.N. Wagner Jr), US Atomic Energy Commission, Oak Ridge, pp. 335–58.Google Scholar
  3. 3.
    Ahlgren, L., Ivarsson, S., Johansson, L. et al. (1985) Excretion of radionuclides in human breast milk after administration of radiopharmaceuticals. J. Nucl. Med., 26, 1085–90.Google Scholar
  4. 4.
    Dayton, D.A., Maher, F.T. and Elveback, L.R. (1969) Renal clearance of technetium (99mTc) as pertechnetate. Mayo Clin. Proc, 44, 549–51.Google Scholar
  5. 5.
    MIRD dose estimate report No. 8 (1976) Summary of current radiation dose estimate to normal humans from 99mTc as sodium pertechnetate. J. Nucl. Med., 17, 74–7.Google Scholar
  6. 6.
    Nowotnik, D.P., Canning, C.R., Cumming, S.A. et al (1985) Development of a 99mTc labeled radiopharmaceutical for cerebral blood flow imaging. Nucl. Med. Commun., 6, 499–506.CrossRefGoogle Scholar
  7. 7.
    Neirinckx, R.D., Canning, L.R., Piper, I.M. et al. (1987) 99mTc-d, 1-HMPAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J. Nucl. Med., 28, 191–202.Google Scholar
  8. 8.
    Nakamura, K., Tukatani, Y., Kubo, A. et al. (1989) The behaviour of 99mTc HMPAO in blood and brain. Eur. J. Nucl. Med., 15, 100–7.CrossRefGoogle Scholar
  9. 9.
    Ell, P.J., Hocknell, J.M.L., Jarritt, P.H. et al. (1985) A Tc-99m labelled radiotracer for the investigation of cerebral vascular disease. Nucl. Med. Commun., 6, 437–41.CrossRefGoogle Scholar
  10. 10.
    El-Shirbiny, A.M., Sadek, S., Owunwanne, A. et al. (1989) Is 99mTc-hexamethylene propyle-neamine oxime uptake in the tissues related to glutathione cellular content? Nucl. Med. Comm un.,10, 905–11.CrossRefGoogle Scholar
  11. 11.
    Rowell, N.P., McCready, V.R., Cromin, B. et al. (1989) 99mTc-labeled meso-HMPAO and glutathione content of human lung tumours. Nucl. Med. Commun., 10, 503–8.CrossRefGoogle Scholar
  12. 12.
    Product Information (1992) Kit for the preparation of technetium-99m-exametazime injection, Amersham International, U K.Google Scholar
  13. 13.
    Meyer, J.Y., Thomson, D., Mena, I. and Marcus, C.S. (1990) Lacrimal gland dosimetry for the brain imaging agent 99mTc-HMPAO. J. Nucl. Med. 31, 1237–39.Google Scholar
  14. 14.
    Maguire, C, Florence, S., Powe, J.E. et al (1990) Hepatic uptake of 99mTc-HMPAO in a fetus. J. Nucl. Med., 31, 237–39.Google Scholar
  15. 15.
    Verbruggen, A.M. (1990) Radiopharmaceuticals: state of the art. Eur. J. Nucl. Med., 17, 346–64.CrossRefGoogle Scholar
  16. 16.
    Colombo, F., Lunghi, F., Deleide, G. et al. (1989) A new 99mTc-PAO cerebral perfusion agent with in vitro stability (abstract). J. Nucl. Med., 30, 742.Google Scholar
  17. 17.
    Messa, C, Zito, F., Rossetti, C. et al (1989) Evaluation of a new tracer for cerebral perfusion studies: 99mTc d, l-CB-PAO. Preliminary results in humans (abstract). J. Nucl Med., 30, 831.Google Scholar
  18. 18.
    Walovitch, R.C., Hill, T.C., Garrity, S.T. et al (1989) Characterisation of 99mTc-L, L-ECD for brain perfusion imaging. 1. pharmacology of 99mTc-ECD in non-human primates. J. Nucl Med., 30, 1892–901.Google Scholar
  19. 19.
    Leveille, J., Demonceau, G., Roo, M.D. et al (1989) Characterisation of technetium-99m-l,1-ECD for brain perfusion imaging. 2. Biodistribution and brain imaging in humans. J. Nucl Med., 30, 1902–10.Google Scholar
  20. 20.
    Vallabhajosula, S., Zimmerman, R.E., Picard, M. et al (1989) Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J. Nucl. Med., 30, 599–604.Google Scholar
  21. 21.
    Walovitch, R.C., Makuch, J., Krapik, A.D. et al (1988) Brain retention of 99mTc-ECD is related to in vivo metabolism (abstract). J. Nucl Med., 29, 747.Google Scholar
  22. 22.
    Morgan, G.F., Deblaton, M., Clemens, P. et al (1991) Technetium-99m-MRP20, a potential brain perfusion agent: in vivo biodistribution and SPECT studies in non-primate animals. J. Nucl Med., 32, 500–5.Google Scholar
  23. 23.
    Bossuyt, A., Morgan, G.F., Deblaton, M. et al (1991) Technetium-99m-MRP20, a potential perfusion agent: in vivo biodistribution and SPECT studies in normal male volunteers. J. Nucl Med., 32, 399–403.Google Scholar
  24. 24.
    McAfee, J.G. and Subramanian, G. (1984) Radionuclide agents for imaging, in Clinical Scintillation Imaging (eds L.M. Freeman and P.M. Johnson), Grune & Stratton, New York, pp. 55–177.Google Scholar
  25. 25.
    Subramanian, G., Arnold, R.W., Thomas, F.D. et al (1972) Evaluation of an instant 99mTc-labeled lung scanning agent. J. Nucl. Med., 13, 790.Google Scholar
  26. 26.
    Allen, D.R., Nelp, W.B., Chesey, F.W. et al (1973) Clinical assessment of changes in the pulmonary circulation following injection of lung scanning agent (MAA) (abstract). J. Nucl Med., 14, 375.Google Scholar
  27. 27.
    Product Information (1991) Kit for the preparation of technetium Tc-99m albumin aggregated, Dupont Merck Pharmaceuticals, MA.Google Scholar
  28. 28.
    Rhodes, B.A., Zolle, I., Buchaman, J.W. et al (1969) Radioactive albumin microspheres for studies of pulmonary circulation. Radiology, 92, 1453–60.Google Scholar
  29. 29.
    Wicks, R., Rosenspire, K., Ackerhalt, R. et al (1981) Distribution of Tc-99m administered as labeled microspheres for lung imaging, in Third International Radiopharmaceutical Dosimetry Symposium (eds E.E. Watson, A.T. Schlafke-Stelson, J.I. Coffey, and R.J. Cloutier), US Public Health Service, Rockville, MD, pp. 454–63.Google Scholar
  30. 30.
    Blau, M., Wicks, R., Thomas, S.R., Lathrop, K.A. (1982) MIRD Report No. 10. Albumin microspheres labeled with technetium-99m. J. Nucl. Med., 23, 915–17.Google Scholar
  31. 31.
    Coates, G. and O’Brodovich, H. (1986) Measurement of pulmonary epithelial permeability with Tc-99m DTPA aerosol. Semin. Nucl Med., 16, 275–84.CrossRefGoogle Scholar
  32. 32.
    Waldman, D.L. and Weber, D.A. (1984) A pharmacokinetic approach to evaluation of aerosol solutes for lung permeability studies (abstract). J. Nucl Med., 25, 18.Google Scholar
  33. 33.
    Chamberlin, M.J., Morgan, W.K.C. and Vinitski, S. (1983) Factors influencing the regional deposition of inhaled particles in man. Clin. Sci., 64, 69–78.Google Scholar
  34. 34.
    Kawakani, K. and Takagi, H. (1989) Pulmonary clearance of Tc-99m HMPAO aerosols: a new application of a lipophilic substance (abstract). J. Nucl Med., 30, 743.Google Scholar
  35. 35.
    Chopra, S.K., Taplin, G.V., Toshkin, D.P. et al (1979) Lung clearance of soluble radioaerosols of different molecular weights in systemic sclerosis. Thorax, 34, 63–7.CrossRefGoogle Scholar
  36. 36.
    Dolovich, M.B., Coates, G., Hargreave, F. and Newhouse, M.T. (1985) Aerosols in diagnosis: ventilation, airway penetrance, airway reactivity, epithelial permeability and mucociliary transport, in Aerosols in Medicine (eds F. Moren, M.T. Newhouse, M.D. Dolovich), Elsevier, Amsterdam, pp. 225–61.Google Scholar
  37. 37.
    Waldman, D.L., Weber, D.A., Oberdorster, G. et al. (1987) Chemical breakdown of tech-netium-99m DTPA nebulization. J. Nucl. Med., 28, 378–82.Google Scholar
  38. 38.
    Coates, G. and O’Brodovich, H.M. (1965) The contribution of lymphatic drainage to the clearance of solutes from lungs of sheep (abstract). Physiologist, 8, 279.Google Scholar
  39. 39.
    Huchon, G.J., Mentgomery, A.B., Lipavsky, A. et al (1987) Respiratory clearance of aerosolized radioactive solutes of varying molecular weight. J. Nucl. Med., 28, 894–902.Google Scholar
  40. 40.
    Atkins, H.L., Weber, D.A., Susskind, H., and Thomas, S.R. (1992) MIRD dose estimate report No. 16: radiation absorbed dose from technetium-99m-diethylenetriamine-pentaace-tic acid aerosol. J. Nucl Med., 33, 1717–19.Google Scholar
  41. 41.
    Srivastava, S.C. and Chervu, L.R. (1984) Radionuclide-labeled red blood cells: current status and future prospects. Semin. Nucl Med., 14, 68–82.CrossRefGoogle Scholar
  42. 42.
    Atkins, H.L., Srivastava, S.C, Meinken, G.E. and Richards, P. (1985) Biological behaviour of erythrocytes labeled in vivo and in vitro with technetium-99m. J. Nucl Med. Tech., 13, 136–39.Google Scholar
  43. 43.
    Atkins, H.L., Thomas, S.R., Buddemeyer, U., and Chervu, L.R. (1990) MIRD dose estimate report No 14: Radiation absorbed dose from technetium-99m-labeled red blood cells. J. Nucl Med., 31, 378–80.Google Scholar
  44. 44.
    Atkins, H.L., Eckelman, W.C, Hauser, W. et al (1972) Splenic sequestration of 99mTc-labeled red blood cells. J. Nucl Med., 13, 811–14.Google Scholar
  45. 45.
    Jacob, H.S. and Jandl, J.H. (1962) Effects of sulf-ahydryl inhibition on red blood cells. I. Mechanism of hemolysis. J. Clin. Invest., 41, 779–92.CrossRefGoogle Scholar
  46. 46.
    Hamilton, R.G., Alderson, R.G., Harwig, J.F. and Siegel, B.A. (1976) Splenic imaging with 99mTc-labeled erythrocytes: a comparative study of cell-damaging methods. J. Nucl. Med., 17, 1038–43.Google Scholar
  47. 47.
    Vaik, P.E. and Guille, J. (1984) Measurement of splenic function with heat damaged RBCs: effect of heating conditions: concise communication. J. Nucl Med., 25, 965–68.Google Scholar
  48. 48.
    Gutkoski, R.F. and Dworkin, HJ. (1974) Kit-produced 99mTc-labeled red cells for spleen imaging. J. Nucl Med., 15, 1187–91.Google Scholar
  49. 49.
    Atkins, H.L., Goldman, A.G., Fairchild, R.G. et al (1980) Splenic sequestration of 99mTclabeled heat treated red blood cells. Radiology, 136, 501–3.Google Scholar
  50. 50.
    ICRP Publication 53 (1990) Radiation dose to patients from radiopharmaceuticals, Pergamon Press, Oxford, pp. 211–12.Google Scholar
  51. 51.
    Jones, A.G., Dionauge, G.F., Davison, A. et al (1985) Biological distribution and structure function relationship of hexakis isonitrile Tc (I) complexes (abstract). J. Nucl. Med. All Sci., 29, 200.Google Scholar
  52. 52.
    Patel, M., Jahan, S. and Owunwanne, A. (1993) Miniaturised and rapid paper chromatographic technique for radiochemical quality control of 99mTc-Hexakis-2-methoxy isobutyli-sonitrile (99m Tc-Sestamibi) (abstract). J. Nucl. Med., 34, 234.Google Scholar
  53. 53.
    Wackers, F.J.T., Berman, D.S., Maddahi, J. et al (1989) Technetium-99m hexakis-2-metho-xyisobutylisonitrile human biodistribution, dosimetry, safety and preliminary comparison to thallium-201 for myocardial perfusion imaging. J. Nucl. Med., 30, 301–11.Google Scholar
  54. 54.
    Mousa, S.A. and Williams, S.J. (1986) Myocardial uptake and retention of 99mTc-hexakis aliphatic isonitriles: evidence for specificity (abstract). J. Nucl Med., 27, 995.Google Scholar
  55. 55.
    Maublant, J.C., Gachon, P. and Moins, N. (1988) Hexakis (2-methoxy isobutrylisonitrile) technetium-99m and thallium-201 chloride: uptake and release in cultured myocardial cells. J. Nucl Med. 29, 48–54.Google Scholar
  56. 56.
    Buja, L.M., Hagler, H.K., Parsons, D. et al (1985) Attractions of ultrastructure and elemental composition in cultured neonatal rat cardiac myocytes after metabolic inhibition with iodoacetic acid. Lab. Invest., 53, 397–412.Google Scholar
  57. 57.
    McCall, D. (1979) Cation exchange and glycoside binding in cultured rat heart cells. Am. J. Physiol, 236, C–87–C–95.Google Scholar
  58. 58.
    Taillefer, R., Boucher, Y., Potvin, C. and Lambert, R. (1992) Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study). J. Nucl. Med., 33, 1801–7.Google Scholar
  59. 59.
    Muller, ST., Guth-Tougelides, B. and Creutzig, H. (1987) Imaging of malignant tumours with 99mTc-MIBI SPECT, (abstract). J. Nucl. Med., 28, 562.Google Scholar
  60. 60.
    Product Information (1992) Cardiolite, kit for preparation of technetium-99m sestamibi, Dupont Merck Pharmaceuticals, MA.Google Scholar
  61. 61.
    Treher, E.N., Francesconi, L.C., Gougoutas, J.Z. et ah (1989) Mono-capped tris dioxime complexes of technetium (III): synthesis and structural characterization of TCX (dioxime)3 B-R (X=C1, Br; dioximedimethylglyoxime cyclolex-anedioxime; R=CH3, C4H9). Inorg. Chem., 28, 3411–16.CrossRefGoogle Scholar
  62. 62.
    Wang, T.S.T. (1988) 99mTc-Radiopharmaceu-ticals: recent advances and clinical prospectives, in Nuclear Medicine Update (eds S.D.J. Yeh and D.C.P. Chen), Taipei, Taiwan, The Society of Nuclear Medicine, Republic of China, pp. 77–85.Google Scholar
  63. 63.
    Squibb Diagnostics (1986) Clinical evaluation of SQ 30217 as a myocardial imaging agent, Clinical Report 26742, Squibb Diagnostics New Brunswick, NJ.Google Scholar
  64. 64.
    Johnson, L.L. and Seldin, D.W. (1990) Clinical experience with technetium-99m teboroxime, a neutral, lipophilic myocardial perfusion imaging agent. Am. ]. Cardiol, 66,63E–67E.CrossRefGoogle Scholar
  65. 65.
    Maublant, J.C., Moins, N., Gachon, P. et al (1993) Uptake of technetium-99m-teboroxime in cultured myocardial cells: comparison with thal-lium-201 and technetium-99m sestamibi. J. Nucl Med., 34, 255–59.Google Scholar
  66. 66.
    Rumsey, W.L., Rosenspire, K.C. and Nunn, A.D. (1992) Myocardial extraction of toborox-ime: Effects of teboroxime interaction with blood. J. Nucl Med., 33, 94–101.Google Scholar
  67. 67.
    Product Information (1992) Cardiotec kit: for the preparation of technetium Tc-99m teboroxime. Squibb Diagnostic, New Brunswick, NJ.Google Scholar
  68. 68.
    Kelly, J.D., Forster, A.M., Higley, B. et al (1993) Technetium-99m tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J. Nucl. Med., 34, 222–27.Google Scholar
  69. 69.
    Higley, B., Smith, F.W., Smith, T. et al (1993) Technetium-99m-l,2-bis [bis (2-ethoxyethyl) phosphino] ethane: human biodistribution, dosimetry and safety of anew myocardial perfusion imaging agent. J. Nucl. Med., 34, 30–8.Google Scholar
  70. 70.
    Russell, R.G.G., Muhlbauer, R.C., Bisaz, S. et al (1970) The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatite in vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomized rats. Calcif. Tissue Res., 6, 183–96.CrossRefGoogle Scholar
  71. 71.
    Russell, CD. and Cash, A.G. (1979) Complexes of technetium with pyrophosphate, etidronate and medronate. J. Nucl Med., 20, 532–37.Google Scholar
  72. 72.
    Bevan, J.A., Tofe, J.A., Benedict, J.J. et al (1980) 99mTc-HMDP (hydroxymethylene diphospho-nate): a radiopharmaceutical for skeletal and acute myocardial infarct imaging. I. Synthesis and distribution in animals. J. Nucl Med., 21, 961–66.Google Scholar
  73. 73.
    Castronovo, F.P. (1974) Method for the synthesis of l-hydroxyethylidene-1,l-disodium phosphonate (HEDSPA): a skeletal seeking radiopharmaceutical after labeling with 99mTc. J. Nucl Med., 15, 127–30.Google Scholar
  74. 74.
    Quimby, O.T., Prentice, J.B. and Nickolson, D.A. (1967) Tetrasodium carbomyldiphos-phate, synthesis, reactions and spectral properties. J. Org. Chem., 32, 4111–14.CrossRefGoogle Scholar
  75. 75.
    Francis, M.D., Russell, R.G.G. and Fleish, H. (1969) Diphosphonates inhibit formation of calcium phosphate crystals invitro and pathological calcification invivo. Science, 165,1264r–66.CrossRefGoogle Scholar
  76. 76.
    Owunwanne, A., O’mara, R.E. and Wilson, G.A. (1979) Factors influencing blood clearance of bone scanning radiopharmaceuticals. A review. Teaching exhibit presented at the 26th annual meeting of the Society of Nuclear Medicine, Atlanta, GA, June, pp. 26–9.Google Scholar
  77. 77.
    Eckelman, W.C. and Volkert, W.A. (1982) In vivo chemistry of 99mTc-chelates. Int. ]. Appl Radiat., 33, 945–51.CrossRefGoogle Scholar
  78. 78.
    Buja, L.M., Tofe, A.J., Kulkarni, P.V. et al (1977) Sites and mechanisms of localisation of technetium-99m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. J. Clin. Invest., 60, 724–40.CrossRefGoogle Scholar
  79. 79.
    Dewanjee, M.K. and Kahn, P.C. (1976) Mechanism of localisation of 99mTc-labeled pyrophosphate and tetracycline in infarcted myocardium. J. Nucl Med., 17, 639–46.Google Scholar
  80. 80.
    Kelly, R.J., Chitton, H.M., Hackshaw, B.T. et al (1979) Comparison of Tc-99m pyrophosphate and Tc-99m methylene diphosphonate in acute myocardial infarction: concise communication. J. Nucl Med., 20, 402–6.Google Scholar
  81. 81.
    Wakat, M.A., Chitton, H.M., Hackshaw, B.T. et al. (1980) Comparison of Tc-99m pyrophosphate and Tc-99m hydroxymethylene disphosphonate in acute myocardial infarction: concise communication. J. Nucl. Med., 21, 203–6.Google Scholar
  82. 82.
    Subramaniam, G., McAfee, J.G., Blair, R.J. et al. (1975) An evaluation of 99mTc-labeled phosphate compounds as bone imaging agents, in Radiopharmaceuticals (eds G. Subramanian, B.A. Rhodes and J.F. Cooper), The Society of Nuclear Medicine, New York, pp. 319–28.Google Scholar
  83. 83.
    Weber, D.A., Makler, P.T., Watson, E.E. et al (1989) Radiation absorbed dose from technetium labeled bone imaging agents: MIRD dose estimate report No. 13. J. Nucl. Med., 30, 1117–22.Google Scholar
  84. 84.
    Ege, G.N. and Warbick, A. (1979) Lymphoscintigraphy: A comparison of 99mTc-anti-mony sulphide colloid and 99mTc-stannous phytate. Br. ]. Radiol, 52, 124–29.CrossRefGoogle Scholar
  85. 85.
    McAfee, J.G., Subramanian, G., Aburano, T. et al (1982) A new formulation of 99mTc-min-imicroaggregated albumin for marrow imaging: comparison with other colloids, In-111 and Fe-59. J. Nucl. Med., 23, 21–8.Google Scholar
  86. 86.
    Stern, H.S., McAfee, J.G., Subramanian, G. (1966) Preparation, distribution and utilisation of 99mTc-sulfur colloid. J. Nucl Med., 7, 665–75.Google Scholar
  87. 87.
    Subramanian, G., McAfee, J.G. (1970) Stannous oxide colloid labeled with 99mTc or 113mIn for bone marrow imaging, (abstract). J. Nucl. Med., 11, 365.Google Scholar
  88. 88.
    Hirsh, J.I., Tatum, J.L., Fratkin, M.J., et al (1989) Preparation and evaluation of a 99mTc-SnF2 colloid kit for leucocyte labeling. J. Nucl Med., 30, 1257–63.Google Scholar
  89. 89.
    Subramanian, G., McAfee, J.G., Mehter, A. et al (1973) Tc-Stannous phytate: a new in-vivo colloid for imaging the reticuloendothelial system (abstract). J. Nucl. Med., 14, 459.Google Scholar
  90. 90.
    Product Information (1990) Technescan Sb2S3, Mallinckrodt Diagnostica, Holland.Google Scholar
  91. 91.
    Product Information (1992) Solco nanocol-loid, Sorin Biomedica SPA, Italy.Google Scholar
  92. 92.
    Strand, S-E., Persson, B.R.R. (1979) Quantitative lymphoscintigraphy. II. basic concepts for optimal uptake of radiocolloids in the parasternal lymph nodes of rabbits. J. Nucl. Med., 20, 1038–46.Google Scholar
  93. 93.
    Atkins, H.L., Cloutier, R.J., Lathrop, K.A. et al (1975) Technetium-99m sulphur colloid in various liver conditions. J. Nucl. Med., 16, l08A–l08B.Google Scholar
  94. 94.
    Product Information (1992) Amerscan hepatate II technetium agent for liver/ spleen scintigraphy, Amersham International, UK.Google Scholar
  95. 95.
    Product Information (1993) Frostimage phytate. Mallinkrodt Radiopharmaceuticals, St. Louis.Google Scholar
  96. 96.
    Malmud, L.S., Fisher, R.S., Knight, L.C. and Rock, E. (1982) Scintigraphic evaluation of gastric emptying. Semin. Nucl. Med., 12, 116–25.CrossRefGoogle Scholar
  97. 97.
    Sadek, S., Owunwanne, A., Yacoub, T. and Abdel-Dayem, H.M. (1988) Comparative study of labeled chicken liver and egg-white as solid markers for gastric emptying studies (abstract). J. Nucl Med., 29, 752.Google Scholar
  98. 98.
    Wright, R.A., Thomson, D., Syed, I. (1981) Simultaneous markers for fluid and solid gastric emptying: new variations on an old theme: concise communication. J. Nucl. Med., 22, 772–76.Google Scholar
  99. 99.
    Loberg, M.D. and Fields, A.T. (1978) Chemical structure of technetium-99m labeled N-(dimethyl phenyl carbamoyl methyl)-imminodiacetic acid (99mTc-HIDA). Int. J. Appl. Radiat, hot. 79, 167–73.CrossRefGoogle Scholar
  100. 100.
    Nunn, A.D., Loberg, M.D. and Conley, R.A. (1983) A structure distribution relationship approach leading to the development of Tc-99m mebrofenin: an improved cholescinti-graphic agent. J. Nucl. Med., 24, 423–30.Google Scholar
  101. 101.
    Subramanian, G., McAfee, J.G., Henderson, R.W. et al (1978) The influence of structural changes on biodistribution of Tc-99m labeled and N-substituted IDA derivatives. Nuklearmedizin, 16, 136–39.Google Scholar
  102. 102.
    Motter, M. and Kloss, G. (1981) Properties of various IDA derivatives. J. Label Compounds Radiopharm., 18, 56–8.Google Scholar
  103. 103.
    Janshott, A.L., Scheibe, P.O., Vera, D.R. et al (1982) Use of quantitative structure activity analysis in radiopharmaceutical design, in Proceedings of the Third World Congress of Nuclear Medicine and Biology, Vol1 (ed. C. Raynaud), Pergamon Press, Oxford, pp. 261–64.Google Scholar
  104. 104.
    Chiotellis, E. and Varvarigou, A. (1980) 99mTc-labeled N-substituted carbonyl imin-odiacetates: relationship between structure and biodistribution. Int. J. Nucl. Med. Biol, 7, 1-7.Google Scholar
  105. 105.
    Harvey, E., Loberg, M., Ryan, J. et al (1979) Hepatic clearance mechanism of 99mTc-HIDA and its effect on quantitation of hepatobiliary function. J. Nucl. Med., 20,310–13Google Scholar
  106. 106.
    Loberg, M.D. and Porter, D.W. (1979) Review and current status of hepatobiliary imaging agents, in Radiopharmaceuticals, Vol. II (eds G. Subramanian, B.A. Rhodes, I.F. Cooper and V. Sodd), The Society of Nuclear Medicine, New York, pp. 519–43.Google Scholar
  107. 107.
    Krishnamurthy, G.T. and Turner, F.E. (1990) Pharmacokinetics and clinical application of technetium-99m labeled hepatobiliary agents. Semin. Nucl Med., 22, 130–49.CrossRefGoogle Scholar
  108. 108.
    Product Information (1992) Technetium EHIDA (Etifenin) agent for hepatobiliary scintigraphy, Amersham International, UK.Google Scholar
  109. 109.
    Product Information (1992) Hepatolite (Technetium-99m disofenin), Dupont Merck Pharmaceuticals, North Bilerica, MA.Google Scholar
  110. 110.
    Product Information (1992) Choletec (tech-netium-99m mebrofenin), Squibb Diagnostics, Princeton, NJ.Google Scholar
  111. 111.
    Russel, C.D., Crittenden, R.C. and Cash, A.G. (1980) Ionic charge on 99mTc-DTPA and 99mTc-EDTA by column ion-exchange. J. Nucl Med., 21, 354–60.Google Scholar
  112. 112.
    Russel, CD. and Speiser, A.G. (1982) Iminodiacetate complexes of technetium: an electrochemical study. Int. J. Appl. Radiat. Isot., 33, 903–6.CrossRefGoogle Scholar
  113. 113.
    Kloppen, J.F., Hauser, W., Atkins, H.L. et al. (1972) Evaluation of 99mTc-DTPA for the measurement of glomerular filtration rate. J. Nucl Med., 13, 107–10.Google Scholar
  114. 114.
    Duffy, G.J., Casey, M., and Baker, F. (1982) A comparison of individual kidney GFR measured by 99mTc-DTPA gamma camera renography and by direct collection of creatinine from each kidney, in Radionuclides in Nephrology. Proceedings of the 5th International Symposium held at the Royal Society, London (eds Joeckes, Constable, Brown and Tauxe), Academic Press, London, p. 101.Google Scholar
  115. 115.
    Arnold, R.W., Subramanian, G., McAfee, J.G. et al (1975) Comparison of 99mTc-complexes for renal imaging. J. Nucl Med., 16, 357–67.Google Scholar
  116. 116.
    McAfee, J.G., Gangne, G., Atkins, H.I. et al (1979) Biological distribution and excretion of DTPA labeled with 99mTc and mIn. J. Nucl Med., 20, 1273–78.Google Scholar
  117. 117.
    Rollo, F.D., Cavalier, R.R., Barn, M. et al (1977) Comparative evaluation of 99mTc-GH, 99mTcO 4 and 99mTc-DTPA as brain imaging agents. Radiology, 123, 379–83.Google Scholar
  118. 118.
    Kadir, S. and Strauss, W.H. (1979) Evaluation of inflammatory bowel disease with 99mTc-DTPA. Radiology, 130, 443–46.Google Scholar
  119. 119.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon Press, Oxford, pp. 187–88.Google Scholar
  120. 120.
    Ikeda, L, Inone, O. and Kurata, K. (1977) Preparation of various 99mTc-DMSA complexes and their evaluation as radiotracers. J. Nucl Med., 18, 1222–29.Google Scholar
  121. 121.
    Ohta, H., Yamamoto, K., Endo, K. et al (1984) A new agent for medullary carcinoma of the thyroid. J. Nucl Med., 25, 323–25.Google Scholar
  122. 122.
    Patel, M.C, Patel, R.B., Ramnathan, P. et al (1988) Clinical evaluation of 99mTc(V)-dimer-capto succinic acid (DMSA) for medullary carcinoma of thyroid and its metastasis. Eur. J. Nucl. Med., 13, 507–10.CrossRefGoogle Scholar
  123. 123.
    Lin, T.H., Khentigam, A. and Winchell, H.S. (1974) A 99mTc-Chelate substitute for organo-radiomercurial renal agents. J. Nucl Med., 15, 34–5.Google Scholar
  124. 124.
    Wills, K.W., Martinex, D.A., Hedley-Whyte, E.T. et al (1977) Renal localization of 99mTc-(Sn) glucoheptonate and 99mTc-(Sn) dimercap-tosuccinate in the rat by frozen section autoradiography. Radiat. Res., 69, 475–88.CrossRefGoogle Scholar
  125. 125.
    Hosokava, S., Kawamura, J. and Yoshida, O. (1978) Basic studies on intrarenal localisation of renal scanning agent 99mTc-DMSA. IMS Atom Index, 9, 4177–89.Google Scholar
  126. 126.
    Ramamoorthy, N., Shetye, S.V., Pandey, P.M. et al. (1987) Preparation and evaluation of 99mTc (V)-DMSA complex: studies in medullary carcinoma of thyroid. Eur. J. Nucl Med., 12, 623–28.CrossRefGoogle Scholar
  127. 127.
    Kagi, J.H.R., Himmelhoch, S.R., Whagner, P.D. et al (1974) Equine hepatic and renal metalothineins. J. Biol Chem., 249, 3937–40.Google Scholar
  128. 128.
    Yee, CA., Lee, H.B. and Blaufox, H.D. (1981) 99mTc-DMSA renal uptake: influence of biochemical and physiologic factors. J. Nucl. Med., 22, 1054–58.Google Scholar
  129. 129.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon Press, Oxford, pp. 185–86.Google Scholar
  130. 130.
    de Kieviet, W. (1981) Technetium radiopharmaceuticals: chemical characterization and tissue distribution of Tc-glucoheptonate using Tc-99m and carrier Tc-99. J. Nucl. Med., 22, 703–9.Google Scholar
  131. 131.
    Noronha, O.P.D. (1986) Biliary propensities of technetium-99m glucoheptonate. J. Nucl. Med., 27, 1646–48.Google Scholar
  132. 132.
    ICRP Publication 53. (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon Press, Oxford, pp. 193–94.Google Scholar
  133. 133.
    Fritzberg, A.R., Kasina, S., Eshima, D. and Johnson, D.L. (1986) Synthesis and biological evaluation of 99mTc-MAG3 as a Hippuran replacement. J. Nucl. Med., 27, 111–16.Google Scholar
  134. 134.
    Bormans, G., Cleynhens, B., Van Nerom, C. et al. (1990) Preparation of 99mTc-MAG3 at room temperature (abstract). Eur. J. Nucl. Med., 16, 538.Google Scholar
  135. 135.
    Bubeck, B., Eisenhut, M., Brandan, W. et al. (1988) Pharmacokinetic and metabolism of 99mTc-MAG3 (abstract). J. Nucl. Med., 92, 906.Google Scholar
  136. 136.
    Taylor, A., Eshima, D., Christian, P.E., Wooten, W.W. et al. (1988) Technetium-99m MAG3 kit formulation: preliminary results in normal volunteers and patients with renal failure. J. Nucl Med., 29, 616–22.Google Scholar
  137. 137.
    Benjamin, P.P. (1969) A rapid and efficient method of preparing 99mTc human serum albumin: its clinical application. Int. J. Appl. Radiat. Isot. 20, 187–94.CrossRefGoogle Scholar
  138. 138.
    Callahan, R.J., McKusick, K.A., Lamson III, M. et al. (1976) Technetium-99m-human serum albumin: evaluation of a commercially produced kit. J. Nucl. Med., 17, 47–9.Google Scholar
  139. 139.
    Stern, H.S., McAfee, J.G. and Zolle, I. (1972) Technetium-99m-albumin, in Radioactive Pharmaceuticals, (eds G.A. Andrews, R.M. Kniseley and H.N. Wagner), USAEC Technical Information Center, Oak Ridge, TN, pp. 359–82.Google Scholar
  140. 140.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon Press, Oxford, p. 173.Google Scholar
  141. 141.
    Lemb, M., Oei, T.H., Eifert, H. and Gunther, B. (1993) Technegas: a study of particle structure, size and distribution. Eur. J. Nucl. Med., 20, 576–79.CrossRefGoogle Scholar
  142. 142.
    Burch, W.M., Sullivan, P.J. and McLaren, C.J. (1986) Technegas: a new ventilation agent for lung scanning. Nucl. Med. Commun., 7, 865–71.CrossRefGoogle Scholar
  143. 143.
    Monaghan, P., Provan, I., Murray, C. et al. (1991) An improved radionuclide technique for the detection of altered pulmonary permeability. J. Nucl. Med., 32, 1945–49.Google Scholar
  144. 144.
    Fawdry, R., Bush, V., King, T. and Grunewald, S. (1988) Initial experience with technegas. A new ventilation agent (abstract). J. Nucl. Med., 29, 765.Google Scholar
  145. 145.
    Strong, J.C. and Agnew, J.E. (1989) The particle size distribution of technegas and its influence on regional lung deposition. Nucl. Med. Commun., 10, 425–30.CrossRefGoogle Scholar

Copyright information

© Azuwuike Owunwanne, Mohan Patel and Samy Sadek 1995

Authors and Affiliations

  • Azuwuike Owunwanne
    • 1
  • Mohan Patel
    • 2
  • Samy Sadek
    • 3
  1. 1.Department of Nuclear Medicine, Faculty of MedicineKuwait UniversityKuwait
  2. 2.Kuwait Central Radiopharmacy Kuwait Cancer Control CenterMinistry of Public HealthKuwait
  3. 3.Department of Nuclear Medicine Faculty of MedicineKuwait UniversityKuwait

Personalised recommendations