Drug-radiopharmaceutical interactions

  • Azuwuike Owunwanne
  • Mohan Patel
  • Samy Sadek


Radiopharmaceuticals are designed to have specific biodistribution and/or elimination patterns when administered to normal subjects. In the presence of biochemical and/or pathophysiologic changes, the normal biodis-tribution and elimination pattern may be altered. It is this altered biologic behavior that helps a physician make a diagnosis. Altered biologic behavior may also be due to interferences caused by pharmacodynamic effects of drug(s). Hence, drug-radiopharmaceutical in teraction will be defined as altered biologic behavior due to tissue response of administered drug. When the altered biologic behavior is desired, the alteration is used for diagnostic intervention or drug therapy monitoring; when it is undesired, it may be due to toxicity or direct interaction. Although there are various classifications for drug-radiopharmaceutical interactions, [1–3] the most practical approach is the one summarized in Figure 6.1.


Myocardial Perfusion Kawasaki Disease Biliary Atresia Bile Flow Renovascular Hypertension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hladik III, W.B., Nigg, K.K. and Rhodes, B.A. (1982) Drug-induced changes in the biological distribution of radiopharmaceutical. Semin. Nucl. Med., 12, 184–218.CrossRefGoogle Scholar
  2. 2.
    Lentle, B.C., Scott, J.R., Noujaim, A.A. et al. (1979) Iatrogenic alterations in radionuclide biodistributions. Semin. Nucl. Med., 9, 131–43.CrossRefGoogle Scholar
  3. 3.
    Olmos, R.A.V., Hoefnagel, C.A. and Van der Schoot, J.B. (1993) Nuclear medicine in the monitoring of organ function and the detection of injury related to cancer therapy. Eur. J. Nucl. Med., 20, 515–46.Google Scholar
  4. 4.
    Klabunde, R.E. (1983) Dipyridamole inhibition of adenosine metabolism in human blood. Eur. J. Pharmacol, 93, 21–6.CrossRefGoogle Scholar
  5. 5.
    Verani, M.S. and Mahmarian, J.J. (1991) Myocardial perfusion scintigraphy during maximal coronary artery vasodilatation with adenosine. Am. J. Cardiol, 67,12D–17D.CrossRefGoogle Scholar
  6. 6.
    Iskandrian, A.S. (1991) Single-photon emission computed tomographic thallium imaging with adenosine, dipyridamole, and exercise. Am. Heart J., 122, 279–84.CrossRefGoogle Scholar
  7. 7.
    Smits, P., Corstens, F.H.M., Aengevaeren, W.R.M. et al (1991) False-negative dipyri-damole-thallium 201 myocardial imaging after caffeine infusion. J. Nucl Med., 32, 1538–41.Google Scholar
  8. 8.
    Wilson, R.F., Wyche, K., Christensen, B. et al (1990) Effects of adenosine on human coronary arterial circulation. Circulation, 82, 1595–606.CrossRefGoogle Scholar
  9. 9.
    Rossen, J.D., Quillen, J.E., Lopez, J.A. et al (1991) Comparison of coronary vasodilation with intravenous dipyridamole and adenosine. J. Am. Coll. Cardiol, 18, 485–91.CrossRefGoogle Scholar
  10. 10.
    Hurwitz, R.A., Siddiqui, A., Caldwell, R.L. et al (1990) Assessment of ventricular function in infants and children. Response to dobuta-mine infusion. Clin. Nucl Med., 15, 556–59.CrossRefGoogle Scholar
  11. 11.
    Giacobini, E. (1962) A cytochemical study of the localization of carbonic anhydrase in the nervous system. J. Neurochem., 9, 169–77.CrossRefGoogle Scholar
  12. 12.
    Ridderstrale, Y. and Hanson, M. (1985) Histochemical study of the distribution of car-bonic anhydrase in the cat brain. Acta Physiol. Scand., 124, 557–64.CrossRefGoogle Scholar
  13. 13.
    Ehrenreich, D.L., Burns, R.A., Alman, R.W. et al (1961) Influence of acetazolamide on cerebral blood flow. Arch. Neurol, 5, 227–32.CrossRefGoogle Scholar
  14. 14.
    Hauge, A., Nicolaysen, G. and Thoresen, M. (1983) Acute effects of acetazolamide on cerebral blood flow in man. Acta Physiol. Scand., 117, 233–39.CrossRefGoogle Scholar
  15. 15.
    Berndt, W.O. and Stitzel, R.E. (1990) Water, electrolyte metabolism and diuretic drugs, in Modern Pharmacology, 3rd edn. (eds C.R. Craig and R.E. Stitzel), Little Brown, Boston, pp. 248–70.Google Scholar
  16. 16.
    Hodson, G.P., Isles, CE., Murray, G.D. et al (1983) Factors related to first dose hypotensive effect of Captopril prediction and treatment. BMJ, 286, 832–34.CrossRefGoogle Scholar
  17. 17.
    Wenting, G.J., Tan-Tjiong, H.L., Dereks, F.H.M. et al (1984) Split renal function after Captopril in unilateral renal artery stenosis. BMJ, 288, 886–90.CrossRefGoogle Scholar
  18. 18.
    Majd, M., Potter, B.M., Guzzetta, P.C. et al (1983) Effect of Captopril on efficiency of renal scintigraphy in detection of renal artery stenosis (abstract). J. Nucl. Med., 24, 23.Google Scholar
  19. 19.
    Oei, H.Y., Geyskes, G.G., Roos, G.L. et al (1984) Diagnosis of unilateral renal artery stenosis by Captopril renography (abstract). Eur. J. Nucl. Med., 9, A24.Google Scholar
  20. 20.
    Miyamori, L, Yasuhara, S., Takeda, Y. et al (1986) Effects of converting enzyme inhibition on split renal function in renovascular hypertension. Hypertension, 8, 415–21.Google Scholar
  21. 21.
    Geyskes, G.G., Oei, H.Y., Puylaert, CB.AJ. et al (1986) Renography with Captopril: changes in a patient with hypertension and unilateral renal artery stenosis. Arch. Intern. Med., 146, 1705–708.CrossRefGoogle Scholar
  22. 22.
    Fommei, E., Ghione, S., Palla, L. et al (1987) Renal scintigraphic Captopril test in the diagnosis of renovascular hypertension. Hypertension, 10, 212–20.Google Scholar
  23. 23.
    Sfakianikis, G.N., Baergoignie, J.J., Jaffe, D. et al (1987) Single dose Captopril scintigraphy in the diagnosis of renovascular hypertension. J. Nucl Med., 28, 1383–92.Google Scholar
  24. 24.
    Fine, E.J. (1991) Intervention in renal scintigraphy. Semin. Nucl Med., 21, 116–27.CrossRefGoogle Scholar
  25. 25.
    Antar, M.A. (1984) Interventional studies of the thyroid, in Interventional Nuclear Medicine (ed. R.P. Spencer), Grune & Stratton, Orlando, FL, pp. 337–407.Google Scholar
  26. 26.
    Hurley, J.R. and Becker, D.V. (1981) Thyroid supression and stimulation testing: the place of scanning in the evaluation of nodular thyroid disease. Semin. Nucl Med., 11, 149–60.CrossRefGoogle Scholar
  27. 27.
    Ingbar, S.H. and Woeber, K.A. (1981) The thyroid gland, in Textbook of Endocrinology, 7th edn (eds R.H. Williams and D.W. Foster), W.B. Saunders, Philadelphia, pp. 682–815.Google Scholar
  28. 28.
    Bobba, V.R., Krishnamurthy, G.T., Kingston, E. et al (1984) Gallbladder dynamics induced by a fatty meal in normal subjects and patients with gallstones: concise communication. J. Nucl Med., 25, 21–4.Google Scholar
  29. 29.
    Krishnamurthy, G.T., Bobba, V.R., McConnel, D. et al. (1983) Quantitative biliary dynamics: introduction of a new non invasive scintigraphic technique. J. Nucl Med., 24, 217–23.Google Scholar
  30. 30.
    Krishnamurthy, G.T., Bubba, V.R. and Kingston, E. (1981) Radionuclide ejection fraction: a technique for quantitative analysis of motor function of human gallbladder. Gastroenterology, 80, 482–90.Google Scholar
  31. 31.
    Fink-Bennett, D. (1991) Augmented cho-lescintigraphy: its role in detecting acute and chronic disorders of the hepatobiliary tree. Semin. Nucl Med., 21, 128–39.CrossRefGoogle Scholar
  32. 32.
    Coleman, R.E., Mashiter, G., Whitaker, K.B. et al (1988) Bone scan flare predicts successful systemic therapy for bone metastases. J. Nucl Med., 29, 1354–59.Google Scholar
  33. 33.
    Stokkel, M.P.M., Vale’s Olmos, R.A., Hoefnagel, C.A. et al (1993) Tumor and therapy associated abnormal changes in bone scintigraphy: old and new phenomena. Clin. Nucl Med., 18, 821–28.CrossRefGoogle Scholar
  34. 34.
    Hortobagyi, G.N., Libshitz, H.I. and Seabold, J.E. (1984) Osseous metastases of breast cancer. Clinical, biochemical, radiographic and scintigraphic evaluation of response to therapy. Cancer, 55, 577–82.CrossRefGoogle Scholar
  35. 35.
    Rossleigh, M.A., Lovegrove, F.T.A., Reynolds, P.M. et al (1984) The assessment of response to therapy of bone metastases in breast cancer. Aust. NZ J. Med., 14, 19–22.CrossRefGoogle Scholar
  36. 36.
    Langhammer, H.R., Sintermann, G.H. and Pabst, H.W. (1978) Serial bone scintigraphy for assessing the effectiveness of treatment of osseous metastases from prostatic cancer. Nucl. Med., 17, 87–91.Google Scholar
  37. 37.
    Citrin, D.L., Tuohy, J.B., Bessent, R.G. et al (1974) Quantitative bone scanning. A method for assessing response of bone metastases to treatment. Lancet, ii, 1132–36.CrossRefGoogle Scholar
  38. 38.
    Shearer, R.J., Constable, A.R., Girling, M. et al (1974) Radioisotopic bone scintigraphy with gamma camera in the investigation of prostatic cancer. BMJ, 346, 362–65.CrossRefGoogle Scholar
  39. 39.
    Takahashi, H., Yamaguchi, K., Wakui, A. et al (1986) New approach to clinical evaluation of cancer chemotherapy using positron emission tomography with 18FDG (2-deoxy-2-[18F] fluoro-D-glucose). Sci.Rep. Inst. Tohoku Univ. (Med.), 33, 38–43.Google Scholar
  40. 40.
    Strauss, L.G. and Conti, P.S. (1991) The applications of PET in clinical oncology. J. Nucl. Med., 32, 623–48.Google Scholar
  41. 41.
    Minn, H. and Paul, R. (1992) Cancer treatment monitoring with fluorine-18 2-fluoro-2-deoxy-D-glucose and positron emission tomography: frustration or future? (editorial). Eur. J. Nucl Med., 19, 921–24.CrossRefGoogle Scholar
  42. 42.
    Tsan, M-F. and Scheffel, U. (1986) Mechanism of gallium-67 accumulation in tumours. J. Nucl, Med., 27, 1215–19.Google Scholar
  43. 43.
    Edward, C.L. and Hayes, R.L. (1969) Tumor scanning with gallium-67 citrate. J. Nucl. Med., 10, 103–5.Google Scholar
  44. 44.
    Fletcher, J.W., Herbig, F.K. and Donati, R.M. (1975) Gallium-67 citrate distribution following whole body irradiation or chemotherapy. Radiology, 117, 709–12.Google Scholar
  45. 45.
    Goolden, A.W.G. and Fraser, T.R. (1969) Effect of pretreatment with Carbimazole in patients with thyrotoxicosis subsequently treated with radioiodine. BMJ, 3, 443–44.CrossRefGoogle Scholar
  46. 46.
    Velkeniers, B., Vanhaelst, L., Cytryn, R. and Jonckheer, M.H. (1988) Treatment of hyperthyroidism with radioiodine: adjunctive therapy with antithyroid drugs reconsidered. Lancet, i, 1127–29.CrossRefGoogle Scholar
  47. 47.
    Clerc, J., Izembart, M., Dagousset, F. et al (1993) Influence of dose selection on absorbed dose profiles in radioiodine treatment of diffuse toxic goiters in patients receiving or not receiving carbimazole. J. Nucl. Med., 34, 387–93.Google Scholar
  48. 48.
    Espinasse, D., Mathieu, L., Alexandre, C. et al. (1981) The kinetics of 99mTc labelled EHDP in Paget’s disease before and after dichlorometh-ylene diphosphonate treatment. Metab. Bone Dis. Res., 2, 321–24.CrossRefGoogle Scholar
  49. 49.
    Vellenga, C, Pauwels, E.K.J., Bijvoet, O.L. et al (1976) Evaluation of scintigraphic and roentgenologies studies in Paget’ s disease under treatment. Radiologia Clin., 45, 293–301.Google Scholar
  50. 50.
    Kao, C-H., Hsieh, K-S., Wang, Y-L. et al. (1992) 99mTc HMPAO WBC imaging to detect myocarditis and to evaluate the results of high dose gamma globulin treatment in Kawasaki disease. Clin. Nucl. Med., 17, 623–26.CrossRefGoogle Scholar
  51. 51.
    Jhingran, S.G., Mukhopadhyay, A.K., Ajmani, S.K. et al (1977) Hepatic adenomas and focal nodular hyperplasia of the liver in young women on oral contraceptives. Case report. J. Nucl. Med., 18, 263–66.Google Scholar
  52. 52.
    Siemsen, J.K., Grebe, S.F. and Waxman, A.D. (1978) The use of Gallium-67 in pulmonary disorders. Semin. Nucl Med., 8, 235–49.CrossRefGoogle Scholar
  53. 53.
    Morais, J., LeMarec, H., Peltier, P. et al (1992) MIBG scintigraphy of a patient with pheochro-mocytoma on labetalol therapy. Clin. Nucl Med., 17, 308–11.CrossRefGoogle Scholar
  54. 54.
    Domstad, P.A., Kim, E.E., Coupai, J.J. et al. (1980) Biologie gastric emptying time in diabetic patients using Tc-99m labeled resin oatmeal with and without metoclopramide. J. Nucl. Med., 21, 1098–100.Google Scholar
  55. 55.
    Wackers, F.J.T., Gibbons, R.J., Verani, M.S. et al (1989) Serial quantitative planar tech-netium-99m isonitrile imaging in acute myocardial infarction. Efficacy for noninvasive assessment of thrombolytic therapy. J. Am. Coll Cardiol, 14, 861–73.CrossRefGoogle Scholar
  56. 56.
    Santoro, G.M., Bisi, G., Seigra, R. et al (1990) Single photon emission computed tomography with technetium-99m hexakis 2-methoxy isobutylisonitrile in acute myocardial infarction before and after thrombolytic treatment: assessment of salvaged myocardium and prediction of late functional recovery. J. Am. Coll. Cardiol, 15, 301–14.CrossRefGoogle Scholar
  57. 57.
    Heller, G.V., Parker, J.N., Silverman, K.J. et al (1987) Intra coronary thallium-201 scintigraphy after thrombolytic therapy for acute my-ocardial infarction compared with 10 and 100 day intravenous thallium-201 scintigraphy. J. Am. Coll Cardiol, 9, 300–7.CrossRefGoogle Scholar
  58. 58.
    Hoefnagel, C.A. (1991) Radionuclide therapy revisited. Eur. J. Nucl Med., 18, 408–31.CrossRefGoogle Scholar
  59. 59.
    Beierwaltes, W.H., Rabbani, R., Dmuchowski, C. et al (1984) An analysis of ‘ablation of thyroid remnants’ with 1-131 in 511 patients from 1947-1984: experience at University of Michigan. J. Nucl Med., 25, 1287–93.Google Scholar
  60. 60.
    Leeper, R.D. and Shimaoka, K. (1980) Treatment of metastic thyroid cancer. Clin. Endocrinol. Metab., 9, 383–404.CrossRefGoogle Scholar
  61. 61.
    Mehdi, F., Holmes, R.A., Volkert, W.A. et al (1992) Samarium-153-EDTMP: pharmacokinetic, toxicity and pain response using an escalating dose schedule in treatment of metastatic bone cancer. J. Nucl. Med., 33, 1451–58.Google Scholar
  62. 62.
    Ketring, A.R. (1987) 153Srn-EDTMP and 186Re-HEDP as bone therapeutic radiopharmaceuticals. Nucl. Med. Biol, 14, 223–32.Google Scholar
  63. 63.
    Maxon, H.R., Deutsch, E.A., Thomas, S.R., et al (1988) Re-186 (Sn) HEDP for treatment of multiple metastic foci in bone: human distribution and dosimetric studies. Radiology, 166, 501–7.Google Scholar
  64. 64.
    Jakubowski, W., Feltyowski, T., Januszewicz, W. et al (1985) 131I-meta-iodobenzylguanidine in localization and treatment of pheochromo-cytoma. Nucl. Med. Commun., 6, 586.Google Scholar
  65. 65.
    Ohita, H., Komibuchi, T., Nishino, I. et al (1992) Brain perfusion abnormalities in a thinner and amphetamine abuser detected by 1-123 IMP scintigraphy. Ann. Nucl Med., 6, 273–75.CrossRefGoogle Scholar
  66. 66.
    Kao, C-H., Liao, S-P., Wang, S-J. and Yeh, S-H. (1992) 99mTc PYP imaging in amphetamine intoxication associated with non traumatic rhab-domyolysis. Clin. Nucl Med., 17, 101–2.CrossRefGoogle Scholar
  67. 67.
    Khako, A.K., Gordon, D.H., Bennett, J.M. et al (1977) Myocardial imaging with Tc-99m pyrophosphate in patients on adriamycin treatment of neoplasia. J. Nucl Med., 18, 680–83.Google Scholar
  68. 68.
    Carrid, I., Estorch, M., Berna, L. et al (1991) Assessment of anthracyline-induced myocardial damage by quantitative indium-111 myosin specific monoclonal antibody studies. Eur. J. Nucl Med., 18, 806–12.Google Scholar
  69. 69.
    Lekakis, J., Vassilopoulos, N., Psichoyiou, H. et al (1991) Doxorubicin cardiotoxicity detected by indium-111 myosin specific imaging. Eur. ]. Nucl. Med., 18, 225–26.CrossRefGoogle Scholar
  70. 70.
    Estorch, M., Carrio, I., Berna, L. et al. (1990) Indium-111 antimyosin scintigraphy after doxorubicin therapy in patients with advanced breast cancer. J. Nucl. Med., 31, 1965–69.Google Scholar
  71. 71.
    Hatfield, M.K., Martin, W.B., Ryan, J.W. et al. (1986) Increased uptake of 67-gallium citrate activity in a patient with adriamycin-damaged myocardium. Clin. Nucl. Med., 11, 756–57.CrossRefGoogle Scholar
  72. 72.
    Piwnica-Worms, D., Chiu, M.L. and Kronauge, J.F. (1992) Detection of acute adri-amycin cardiotoxicity in cultured chick heart with Tc-99m-sestamibi (abstract). J. Nucl. Med., 33, 864.Google Scholar
  73. 73.
    Ballinger, J.R., Gerson, B., Gulenchyn, K.Y. et al (1988) Technetium-99m red blood cell labelling in patients treated with doxorubicin. Clin. Nucl. Med., 13, 169–70.CrossRefGoogle Scholar
  74. 74.
    Valde’s Olmos, R.A., ten Bokkel Huinink, W.W., Greve, J.C. and Hoefnagel, C.A. (1992) 1-123 MIBG and serial radionuclide angiocardiography in doxorubicin related cardiotoxicity. Clin. Nucl. Med., 17, 163–67.CrossRefGoogle Scholar
  75. 75.
    Wakasugi, S., Wada, A., Hasegawa, Y. et al (1992) Detection of abnormal cardiac adrenergic neuron activity in adriamycin-induced cardiomyopathy with iodine-125-metaiodobenzyl-guanidine. J. Nucl. Med., 33, 208–14.Google Scholar
  76. 76.
    Frost, D., Sorensen, S., O’Rourke, R. et al (1979) Reversibility of adriamycin induced reduction in myocardial thallium-201 uptake by intravenous digoxin (abstract). Clin. Res., 27, 727A.Google Scholar
  77. 77.
    Sorkin, S.J., Horii, S.C., Passalaqua, A. et al (1977) Augmented activity on bone scan following local chemoperfusion. Clin. Nucl Med., 2, 451.CrossRefGoogle Scholar
  78. 78.
    Richman, S.D., Levenson, S.M., Bunn, P.A. et al (1975) 67Ga accumulation in pulmonary lesions associated with bleomycin toxicity. Cancer, 36, 1966–72.CrossRefGoogle Scholar
  79. 79.
    MacMohan, H. and Bekerman, C. (1978) The diagnostic significance of gallium uptake in patients with normal chest radiographs. Radiol, 127, 189–93.Google Scholar
  80. 80.
    Ugur, O., Caner, B., Balbay, M.D. et al (1993) Bleomycin lung toxicity detected by tech-netium-99m diethylenetriamine penta-acetic acid aerosol scintigraphy. Eur. J. Nucl Med., 20, 114–18.CrossRefGoogle Scholar
  81. 81.
    Lutrin, CL., McDougall, I.R. and Goris, M.L. (1978) Intense concentration of 99mTc pyrophos-phate in the kidneys of children treated with chemotherapeutic drugs for malignant disease. Radiology, 128, 165–67.Google Scholar
  82. 82.
    Anninga, J.K., DeKraker, J., Hoefnagel, C.A. et al (1990) Ifosfamide induced nephrotoxicity evaluated by 99mTc-DMSA renal scintigraphy (abstract). Med. Pediatr. Oncol, 18, 406.Google Scholar
  83. 83.
    Van Luijk, W.H.J., Ensing, G.J., Meijer, S. et al (1984) Is the relative 99mTc-DMSA clearance a useful marker of proximal tubular dysfunction? Eur. J. Nucl. Med., 9, 439–42.CrossRefGoogle Scholar
  84. 84.
    Perry, M.C (1982) Hepatotoxicity of chemotherapeutic agents. Semin. Oncol 9, 65–74.Google Scholar
  85. 85.
    Podoloff, D.A., Kim, E.E. and Haynie, T.P. (1992) SPECT in the evaluation of cancer patients: not quo vadis; rather, ibi fere summus. Radiology, 183, 305–17.Google Scholar
  86. 86.
    Erbas, B., Bekdik, C, Erbengi, G. et al (1992) Regional cerebral blood flow changes in chronic alcoholism using Tc-99m HMPAO SPECT. Comparison with CT parameters. Clin. Nucl Med., 17, 123–27.CrossRefGoogle Scholar
  87. 87.
    Berger, P.E., Culham, J.A.G., Fritz, CR. et al (1976) Slowing of hepatic blood flow by halothane: Angiographic manifestations. Radiology, 118, 303–6.Google Scholar
  88. 88.
    Lee, H-B., Wexler, J.P. Scharf, S.C and Blaufox, M.D. (1983) Pharmacologie alterations in Tc-99m binding by red blood cells: concise communication. J. Nucl Med., 24, 397–401.Google Scholar
  89. 89.
    Havens, P.L., Sty, J.R. and Wells, R.G. (1989) Gallium-67 imaging. Chloroquine overdose. Clin. Nucl Med., 145, 135.CrossRefGoogle Scholar
  90. 90.
    Owunwanne, A., Shihab-Eldeen, A., Sadek, S. et al (1990) The study of the effect of cy-closporin-A on bile flow in experimental animal using technetium-99m EHIDA. Am. J. Physiol Imag., 5, 30–5.Google Scholar
  91. 91.
    Owunwanne, A., Shihab-Eldeen, A., Sadek, S. et al (1993) Is cyclosporine-A toxic to the heart? J. Heart Lung Transplant., 12, 199–204.Google Scholar
  92. 92.
    Klintmalm, G.B.G., Klingensmith, W.C, Iwatsuki, S. et al (1982) 99mTc DTPA and 131I-hippuran findings in liver transplant recipients treated with cyclosporin-A. Radiology, 142, 199–202.Google Scholar
  93. 93.
    Thomsen, H.S. and Munck, O. (1987) Use of 99mTc radionuclides to show nephrotoxicity to cyclosporin-A in transplanted kidneys. Acta Radiol, 28, 59–61.CrossRefGoogle Scholar
  94. 94.
    McAfee, J.G., Thomas, F.D., Subramanian, G. et al. (1988) Evaluation of cyclosporine nephrotoxicity in rats with various renal radioactive agents. J. Nucl. Med., 29, 1577–81.Google Scholar
  95. 95.
    Owunwanne, A., Shihab-Eldeen, A., Sadek, S. et al. (1990) The use of 125I-HIPDM for studying tissue response due to toxic effects of cyclosporin-A in rats. Nucl. Med. Biol., 17, 507–9.Google Scholar
  96. 96.
    Nahman, N.S., Cosio, F.G., Kolkin, S. et al. (1987) Cyclosporine nephrotoxicity without major organ transplantation. Ann. Int. Med., 106, 400–2.Google Scholar
  97. 97.
    McCrea, M.S., Rust, R.J., Cook, D.L. and Stepens, B.A. (1991) Cocaine-induced rhab-domyolysis findings on bone scintigraphy. Clin. Nucl. Med., 16, 292–93.Google Scholar
  98. 98.
    Weber, D.A., Francheschi, D., Ivanovic, M. et al. (1993) SPECT and planar brain imaging in crack abuse: iodine-123 iodoamphetamine uptake and localization. J. Nucl. Med., 6, 899–907.Google Scholar
  99. 99.
    Tumeh, S.S., Nagel, J.S., English, R.J. et al. (1990) Cerebral abnormalities in cocaine abusers: demonstration by SPECT perfusion brain (123IMP) scintigraphy. Radiology, 176, 821–24.Google Scholar
  100. 100.
    Ramsingh, P.S., Pujara, S. and Logic, J.R. (1977)99mTc pyrophosphate uptake in drug induced gynecomastia. Clin. Nucl. Med., 2, 206.CrossRefGoogle Scholar
  101. 101.
    Kim, Y.C., Brown, M.L. and Thrall, J.H. (1977) Scintigraphic patterns of gallium-67 uptake in the breast. Radiology, 124, 169–75.Google Scholar
  102. 102.
    Grayson, R.R. (1960) Factors which influence the radioactive iodine thyroid uptake test. Am. J. Med., 28, 397–415.CrossRefGoogle Scholar
  103. 103.
    Clark, R.E. and Shipley, R.A. (1957) Thyroidal uptake of 131I after iopanoic acid (Telepaque) in 74 subjects. J. Clin. Endocrinol, 17, 1008–10.CrossRefGoogle Scholar
  104. 104.
    Gross, M.D., Valk, T.W., Swanson, D.P. et al (1981) The role of pharmacologic manipulation in adrenal cortical scintigraphy. Semin. Nucl Med, 11, 128–48.CrossRefGoogle Scholar
  105. 105.
    Carr, E.A., Carroll, M. and Montes, M. (1981) Effect of vitamin D3, other drugs altering serum calcium or phosphorus concentrations and desoxycorticosterone on the distribution of Tc-99m pyrophosphate between target and non target tissues. J. Nucl. Med., 22, 526–34.Google Scholar
  106. 106.
    Bobinet, D.J., Sevrin, R., Zurbriggen, M.T. et al (1974) Lung uptake of 99mTc sulfur colloid in patient exhibiting presence of Al+3 in plasma. J. Nucl. Med., 15, 1220–22.Google Scholar
  107. 107.
    Van Antwerp, J.D., Hall, J.N., O’Mara, R.E. et al (1975) Bone scan abnormally produced by interaction of Tc-99m diphosphonate with iron dextran (Imferon) (abstract). J. Nucl. Med., 16,577.Google Scholar
  108. 108.
    Mazzola, A.L., Barker, M.H. and Belliveau, R.E. (1976) Accumulation of 99mTc — diphosphonate at sites of intramuscular iron therapy. Case report. J. Nucl. Med. TechnoL, 4, 133–35.Google Scholar
  109. 109.
    Eshima, M., Shiozaki, H., Ishino, Y. and Nakata, H. (1993) Diffuse liver uptake of Tc-99m phosphate compound associated with intravenous injection of iron colloid solution. Clin. Nucl Med., 18, 348–49.CrossRefGoogle Scholar
  110. 110.
    Hegge, F.N., Hamilton, G.W., Larson, S.M. et al (1978) Cardiac chamber imaging: a comparison of red blood cells labelled with Tc-99m in vitro and in vivo. Nucl Med., 19, 129–34.Google Scholar

Copyright information

© Azuwuike Owunwanne, Mohan Patel and Samy Sadek 1995

Authors and Affiliations

  • Azuwuike Owunwanne
    • 1
  • Mohan Patel
    • 2
  • Samy Sadek
    • 3
  1. 1.Department of Nuclear Medicine, Faculty of MedicineKuwait UniversityKuwait
  2. 2.Kuwait Central Radiopharmacy Kuwait Cancer Control CenterMinistry of Public HealthKuwait
  3. 3.Department of Nuclear Medicine Faculty of MedicineKuwait UniversityKuwait

Personalised recommendations