The fate of administered radiopharmaceuticals

  • Azuwuike Owunwanne
  • Mohan Patel
  • Samy Sadek


The biologic fate of administered radiopharmaceutical is depicted in Figure 5.1 and depends mostly on distribution and elimination because most radiopharmaceuticals are administered by intravenous injection. Absorption plays a minimal role and affects only those few procedures in which radiopharmaceuticals are given intradermally (lymphoscintigraphy), orally (thyroid uptake), intrathecally (cisternography) and by inhala tion (ventilation). Both distribution and elimination are influenced by blood flow, capillary permeability, intracellular interaction and degree of binding to blood components. The residence time in the organ is in turn influenced by any biotransformation that occurs intracellularly. Other factors such as the quality of the radiopharmaceutical and the health status of the patient also affect the distribution and elimination of the administered radiopharmaceutical.


Myocardial Perfusion Imaging Amorphous Calcium Phosphate Pentadecanoic Acid Perfusion Agent ICRP Publication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klassen, CD. (1986) Distribution, excretion and absorption of toxicants, in Casarett and Doul’s Toxicology. The Basic Science of Poisons, 3rd edn (eds C.D. Klaassen, M.D. Amdur and J. Doul), Macmillan Publishing, New York, pp. 33–63.Google Scholar
  2. 2.
    Neirinckx, R. D., Canning, L.R., Riper, I.M. et al (1987) Technetium-99m d, /-HMPAO: a new radiopharmaceutical for SPECT imaging of reional cerebral blood perfusion. J. Nucl. Med. 28, 191–202.Google Scholar
  3. 3.
    Gehring, P.J. and Hammond, P.B. (1967) The interrelationship between thallium and potassium in animals. J. Pharmacol. Exp. Ther., 55, 187–201.Google Scholar
  4. 4.
    Gelbart, A., Doherty, P.W., McLaughlin, P.R. et al. (1976) Na+, K+-ATPase and coronary blood flow as determinants of thallium-201 uptake by ischemic myocardium. Circulation, 54, 11–70.Google Scholar
  5. 5.
    Wolff, J. and Maurey, J.R. (1962) Thyroid iodide transport. III. Comparison with anions of periodic group VII A. Biochim. Biophys. Acta, 57, 422–26.CrossRefGoogle Scholar
  6. 6.
    Wolff, J. (1964) Transport of iodide and other anions into thyroid gland. Physiol. Rev., 44: 45.Google Scholar
  7. 7.
    Gallagher, B.M., Fowler, J.S., Gutterson, N.L. et al (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J. Nucl Med., 19, 1154–61.Google Scholar
  8. 8.
    Atkins, H.L., Richards, P., Schiffer L. (1966) Scanning liver, spleen and bone marrow with colloidal 99mtechnetium. Nucl Applic, 2, 27–32.Google Scholar
  9. 9.
    Heymann, M.A., Payne, B.D., Hoffman, J.I.E. and Rudolph, A.M. (1977) Blood flow measurements with radionuclide-labeled particles. Prog. Cardiovasc. Dis., 20, 55–79.CrossRefGoogle Scholar
  10. 10.
    Wagner Jr, H.N., Rhodes, B.A., Sasaki, Y. et al (1969) Studies of the circulation with radioactive microspheres. Invest. Radiol, 4, 374–86.CrossRefGoogle Scholar
  11. 11.
    Strauss, H.W. and Pitt, B. (1977) Thallium-201 as a myocardial imaging agent. Semin. Nucl. Med., 7, 49–58.CrossRefGoogle Scholar
  12. 12.
    Sharp, P.F., Smith, F.W., Gemmell, H.G. et al (1986) Technetium-99m HM-PAO stereoisomers as potential agents for imaging regional cerebral blood flow: human volunteer studies, J. Nucl Med., 27, 171–77.Google Scholar
  13. 13.
    Vallabhajosula, S., Zimmerman, R.E., Picard, M. et al. (1989) Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J. Nucl Med., 30, 599–604.Google Scholar
  14. 14.
    Pratt, W.B. (1990) The entry, distribution and elimination of drugs, in Principles of Drug Action: The Basis of Pharmacology, 3rd edn (eds W.B. Pratt and P. Taylor), Churchill Livingstone, New York, pp. 201–97.Google Scholar
  15. 15.
    Hartman, R.E. and Hayes, R.L. (1969) The binding of gallium by blood serum. J. Pharmacol Exp. Ther., 168, 193–98.Google Scholar
  16. 16.
    Winchell, H.S., Horst, W.D., Brau L et al (1980) N-isopropyl (123I) p-iodoamphetamine: single-pass brain uptake and washout; binding to brain synaptosomes and localization in dog and monkey brain. J. Nucl Med., 21, 947–52.Google Scholar
  17. 17.
    Kung, H.F., Tramposch, K.M., Blau, M. (1983) A new brain perfusion agent: 123I-HIPDM: N, N, N’-trimethyl-N’-[2-hydroxy-3-methyl-5-iodobenzyl]-l, 3-propanediamine. J. Nucl Med., 24: 66–72.Google Scholar
  18. 18.
    Van Nerom, C., Bormans, G., De Beukelaer, C et al (1990) Metabolism of 99mTc-ECD in organ homogenates of baboon, in Nuclear Medicine: Quantitative Analysis in Imaging and Function (ed. H.A.E. Schmidt), Schattauer, Stuttgart, pp. 87–9.Google Scholar
  19. 19.
    Neirinckx, R.D., Burke J.F., Harrison, R.C et al (1988) The retention mechanism of technetium-99m HMPAO: intracellular reaction with glutathione. J. Cereb. Blood Flow Metab., 8 (Suppl. 1), S4–S12.CrossRefGoogle Scholar
  20. 20.
    Suess, E., Malessa, S., Ungersbock, K. et al. (1991) Technetium-99m d, I-hexamethylpropy-leneamine oxime (HMPAO) uptake and glutathione content in brain tumors. J. Nucl. Med., 32, 1675–81.Google Scholar
  21. 21.
    El-Shirbiny, A.M., Sadek, S., Owunwanne, A. et al. (1989) Is Tc99m-hexamethylene-propyle-neamine oxime uptake in the tissues related to glutathione cellular content? Nucl. Med. Commun., 10, 905–11.CrossRefGoogle Scholar
  22. 22.
    Rowell, N.P., McCready, V.R., Cronin, B. et al. (1989) Tc-99m-labeled meso-HMPAO and glutathione content of human lung tumours. Nucl. Med. Commun., 10, 503–8.CrossRefGoogle Scholar
  23. 23.
    Phelps, M.E. (1981) Positron computed tomography of cerebral glucose metabolism in man: theory and application in nuclear medicine. Semin. Nucl. Med., 11, 32–49.CrossRefGoogle Scholar
  24. 24.
    Kung, H.F., Guoy, Z., Billings, D. et al. (1988) Preparation and bodistribution of [123I] IBZM: a potential CNS D2 dopamine receptor imaging agent. Nucl Med. Biol, 15, 195–201.Google Scholar
  25. 25.
    Bakker, W.H., Albert, R., Bruns, C. et al (1991) [111In-DTPA-D-Phe’]-octreotide, a potential radiopharmaceutical for imaging somatostatin receptor-positive tumours: Synthesis, radiola-beling and in vitro validation. Life Sci., 49, 1583–91.CrossRefGoogle Scholar
  26. 26.
    Jones, A.G., Francis, M.D. and Davis, M.A. (1976) Bone scanning: radionuclide reaction mechanisms. Semin. Nucl Med., 6, 3–18.CrossRefGoogle Scholar
  27. 27.
    Buja, L.M., Tofe, A.J., Kulkarni, P.V. et al (1977) Sites and mechanisms of localization of technetium-99m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. J. Clin. Invest., 60, 724–40.CrossRefGoogle Scholar
  28. 28.
    MIRD dose estimate report No. 8. (1976) Summary of current radiation dose estimate to normal human from 99mTc as sodium pertech-netate. J. Nucl. Med., 17, 74–7.Google Scholar
  29. 29.
    Demonceau, G., Leveille, J. et al. (1988) Comparison of 99mTc-ECD and 99mTc-HMPAO: first human results (abstract). J. Nucl. Med., 29, 747.Google Scholar
  30. 30.
    Bossuyt, A., Morgan, G.F., Deblaton, M. et al. (1991) Technetium-99m MRP-20, a potential perfusion agent: in vivo biodistribution and SPECT studies in normal male volunteers. J. Nucl Med., 32, 399–403.Google Scholar
  31. 31.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon, Oxford, pp. 223.Google Scholar
  32. 32.
    Blau, M., Wicks, R., Thomas, S.R. and Lathrop, K.A. (1982) MIRD dose estimate report No. 10. Radiation absorbed dose from albumin microspheres labeled with technetium-99m. J. Nucl. Med., 23, 915–17.Google Scholar
  33. 33.
    Coates, G. and O’Brodovich, H. (1986) Measurement of pulmonary epithelial permeability with 99mTc DTPA aerosol. Semin. Nucl. Med., 16, 275–84.CrossRefGoogle Scholar
  34. 34.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon, Oxford, p. 209.Google Scholar
  35. 35.
    Atkins, H.L., Goldman, A.G., Fairchild, R.G. et al (1980) Splenic sequestration of 99mTc labeled heat denatured red blood cells. Radiology, 136, 501–3.Google Scholar
  36. 36.
    Wackers, F.J.T., Berman, D.S., Maddahi, J. et al (1989) Technetium-99m hexakis 2-methoxy isobutyl isonitrile: human biodistribution, dosimetry, safety and preliminary comparison to thallium-201 for myocardial perfusion imaging. J. Nucl Med., 30, 301–11.Google Scholar
  37. 37.
    Nara, R.K., Nunn, A.D., Kuczynski, B.L. et al (1989) A neutral technetium-99m complex for myocardial imaging. J. Nucl. Med., 30, 1830–37.Google Scholar
  38. 38.
    Johnson, L.L. and Seldin, D.I.N. (1990) Clinical experience with technetium-99m teboroxime, a neutral, lipophilic myocardial perfusion imaging agent. Am. J. Cardiol, 66, 63E–67E.CrossRefGoogle Scholar
  39. 39.
    Weber, D.A., Makler, P.T., Watson, E.E. et al (1989) MIRD dose estimate report no. 13. Radiation absorbed dose from technetium-99m labeled bone imaging agents. J. Nucl. Med., 30, 1117–22.Google Scholar
  40. 40.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon, Oxford, p. 179.Google Scholar
  41. 41.
    Krishnamurthy, G.T. and Turner, F.E. (1990) Pharmacokinetics and clinical application of technetium-99m labeled hepatobiliary agents. Semin. Nucl Med., 22, 130–49.CrossRefGoogle Scholar
  42. 42.
    Brown, P.H., Krishnamurthy, G.T., Bobba, V.R. et al. (1982) Radiation dose calculation for five Tc-99m IDA hepatobiliary agents. J. Nucl Med., 23, 1025–30.Google Scholar
  43. 43.
    Walter, D.G., Keast, C.M., Fleming, J.S. et al. (1987) Measurement of glomerular Alteration rate with technetium-99m DTPA: comparison of plasma clearance techniques. J. Nucl. Med., 28, 372–77.Google Scholar
  44. 44.
    Hauser, W., Atkins, H.L., Nelson, K.G. and Richards, P. (1970) Technetium-99m-DTPA: a new radiopharmaceutical for brain and kidney scanning. Radiology, 94, 679–84.Google Scholar
  45. 45.
    Arnold, R.W., Subramanian, G., McAfee, J.G. et al. (1975) Comparison of 99mTc complexes for renal imaging. J. Nucl Med., 16, 357–67.Google Scholar
  46. 46.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon, Oxford, p. 185.Google Scholar
  47. 47.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon, Oxford, p. 193.Google Scholar
  48. 48.
    Prenem, J.A.C., deKlerk, J.H.H., Vanhet Schip, A.D. and Van Rijk, P.P. (1991) Technetium-99m MAG3 versus iodine-123-OIH: renal clearance and distribution volume as measured by a constant infusion technique. J. Nucl. Med., 32, 2057–60.Google Scholar
  49. 49.
    Verbruggen, A.M. (1990) Radiopharmaceuticals: state of the art. Eur. J. Nucl. Med., 17, 346–64.CrossRefGoogle Scholar
  50. 50.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon, Oxford, p. 173.Google Scholar
  51. 51.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon, Oxford, pp. 259–62.Google Scholar
  52. 52.
    Taylor, A., Eshima, D. and Fritzberg, A.R. (1986) Comparison of Iodine-131 OIH and Technetium-99m MAG3 renal imaging in volunteers. J. Nucl. Med., 27, 795–803.Google Scholar
  53. 53.
    Thakur, M.L., Lavender, J.P., Rosemary, N. et al. (1977) Indium-111 labeled autologous leucocytes in man. J. Nucl. Med., 18, 1014–19.Google Scholar
  54. 54.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon, Oxford, pp. 255–56.Google Scholar
  55. 55.
    Wessels, P., Heyns, A., Pieters, H. et al. (1985) An improved method for the quantification of the in vivo kinetics of a representative population of 111In labelled platelets. Eur. J. Nucl. Med., 10, 522–27.CrossRefGoogle Scholar
  56. 56.
    Robertson, J.S., Dewanjee, M.K., Brown, M.L. et al. (1981) Distribution and dosimetry of 111In platelets. Radiology, 140, 169–76.Google Scholar
  57. 57.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon, Oxford, pp. 253–54.Google Scholar
  58. 58.
    Goodwin, D.A., Song, C.H., Finston, R. and Matin, P. (1973) Preparation, physiology and dosimetry of 111In-labeled radiopharmaceuticals for cisternography. Radiology, 108, 91–8.Google Scholar
  59. 59.
    Chevru, L.R. (1979) Radiopharmaceuticals in cardiovascular nuclear medicine. Semin. Nucl. Med., 4, 241–56.Google Scholar
  60. 60.
    Saha, G.B., Go, R. and Maclntyre, W.J. (1992) Radiopharma ceuticals for cardiovascular imaging. Nucl Med. Biol, 19, 1–20.Google Scholar
  61. 61.
    McAfee, J.G. and Subramanian, G. (1984) Radioactive agents for imaging, in Freeman and Johnson’s Clinical Radionuclide Imaging. Grune & Stratton, New York, pp. 55–177.Google Scholar
  62. 62.
    ICRP Publication 53 (1990) Radiation Dose to Patients from Radiopharmaceuticals, Pergamon Press, Oxford, p. 141.Google Scholar
  63. 63.
    Phelps, M.E., Hoffman, E.J., Selin, C. et al (1978) Investigation of [18F] 2-fluoro-2-deoxy-glucose for the measure of myocardial glucose metabolism. J. Nucl Med., 19, 1311–19.Google Scholar
  64. 64.
    Mehdi, F., Holmes, R.A., Volkert, W.A. et al (1992) Samarium-153 EDTMP: pharmacokinetic, toxicity and pain response using an escalating dose schedule in treatment of metastatic bone cancer. J. Nucl Med., 33, 1451–58.Google Scholar
  65. 65.
    Owunwanne, A., O’Mara, R.E. and Wilson, G.A. (1979) Factors influencing blood clearance of bone scanning radiopharmaceuticals: a review. Teaching exhibit presented at the 26th annual meeting of the Society of Nuclear Medicine, Atlanta, GA, June 26–29.Google Scholar
  66. 66.
    Subramanian, G., McAfee, J., Blair, R.J. and Thomas, F.D. (1975) An evaluation of 99mTc labeled phosphate compounds as bone imaging agents, in Radiopharmaceuticals (eds G. Subramanian, B.A. Rhodes, J.F. Cooper and V.J. Sodd), The Society of Nuclear Medicine, New York, pp. 319–28.Google Scholar
  67. 67.
    Edwards, C.L., Hayes, R.L., Nelson, B.M. et al (1970) Clinical investigation of 67Ga for tumor scanning (abstract). J. Nucl. Med., 11, 317.Google Scholar
  68. 68.
    Baldwin, R.M. and Wu, J.L. (1988) In-vivo chemistry of iofetamine HCl 123Iodine (IMP). J. Nucl Med., 29, 122–24.Google Scholar
  69. 69.
    Dayton, D.A., Maher, F.T., Elveback, L.R. (1969) Renal clearance of technetium (99mTc) as pertechnetate. Mayo Clin. Proc, 44, 539.Google Scholar
  70. 70.
    Kelly, J.D., Forster, A.M., Higley, B. et al (1993) Technetium-99m tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J. Nucl. Med., 34, 222–27.Google Scholar
  71. 71.
    Nunn, A.D., Loberg, M.D. and Conley, R.A. (1983) A structure-distribution relationship approach leading to the development of Tc-99m mebrofenin: an improved cholescinti-graphic agent. J. Nucl Med., 24, 423–30.Google Scholar
  72. 72.
    Owunwanne, A., Church, L.B. and Blau, M. (1977) Effect of oxygen on the reduction of pertechnetate by stannous ion. J. Nucl Med., 18, 822–26.Google Scholar
  73. 73.
    Schelbert, H.R., Henze, H., Schon, H. et al (1983) C-ll labeled palmitic acid for non invasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. III. In vivo demonstration of the effect of substrate availability on myocardial metabolism. Am. Heart ]., 105, 492–504.CrossRefGoogle Scholar
  74. 74.
    Stocklin, G. (1992) Tracers for metabolic imaging of brain and heart. Eur. J. Nucl. Med., 19, 527–51.CrossRefGoogle Scholar
  75. 75.
    Machulla, H.-J., Marsmann, M., Dutschka, K.P. (1980) Radiopharmaceuticals. Synthesis of ra-dioiodinated phenyl fatty acids for studying myocardial metabolism. J. Radional Chem., 56, 253–61.CrossRefGoogle Scholar
  76. 76.
    Kaiser, K.P., Geuting, B., Grobmann, K. et al (1990) Tracer kinetics of 15-(ortho-123/131I-phenyD-pentadecanoic acid (OPPA) and 15-(p-123/131I-phenyD-pentadecanoic acid (pPPA) in animals and man. J. Nucl. Med., 31, 1608–16.Google Scholar
  77. 77.
    Owunwanne, A., Shihab-Eldeen, A., Sadek, S. et al (1990) The study of the effect of cy-closporin-A on bile flow in experimental animal using technetium-998m EHIDA. Am. J. Physiol Imag., 5, 30–5.Google Scholar
  78. 78.
    Owunwanne, A., Halkar, R., Al-Rasheed, A.A. et al (1988) Radionuclide imaging of the spleen with heat denatured Tc-99m RBC when the splenic reticuloendothelial system seems impaired. J. Nucl. Med., 29, 320–23.Google Scholar
  79. 79.
    dos Remedios, L.V., Weber, P.M. and Jasko, I.A. (1971) Thyroid scintigraphy in 1000 patients: Rational use of 99mTc and 131I compounds J. Nucl. Med., 12, 673–77.Google Scholar

Copyright information

© Azuwuike Owunwanne, Mohan Patel and Samy Sadek 1995

Authors and Affiliations

  • Azuwuike Owunwanne
    • 1
  • Mohan Patel
    • 2
  • Samy Sadek
    • 3
  1. 1.Department of Nuclear Medicine, Faculty of MedicineKuwait UniversityKuwait
  2. 2.Kuwait Central Radiopharmacy Kuwait Cancer Control CenterMinistry of Public HealthKuwait
  3. 3.Department of Nuclear Medicine Faculty of MedicineKuwait UniversityKuwait

Personalised recommendations