Advertisement

Positron emission tomographic (PET) radiopharmaceuticals

  • Azuwuike Owunwanne
  • Mohan Patel
  • Samy Sadek

Abstract

There are two main sources of PET radiopharmaceuticals: cyclotron produced and generator produced.

Keywords

Glucose Utilization Hexokinase Activity Intracoronary Streptokinase Rubidium Chloride Oxygen Carbon Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Phelps, M.E., Huang, S.C., Hoffman, E.J. et al (1979) Tomographic measurements of local cerebral glucose metabolic rate in humans with [F-18]-2-fluorodeoxy-D-glucose: validation of method. Ann. Neurol., 6, 371–88.CrossRefGoogle Scholar
  2. 2.
    Sokoloff, L., Reivich, M., Kennedy, C. et al. (1977) The [C-14] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochem., 28, 897–916.CrossRefGoogle Scholar
  3. 3.
    Reivich, M., Kuhl, D., Wolf, A. et al. (1979) The [F-18] fluorodeoxy glucose method for the measurement of local cerebral glucose utilization in man. Circ. Res., 44, 127–37.Google Scholar
  4. 4.
    Sokoloff, L. (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. A review. J. Cereb. Blood Flow Metab., 1, 7–36.CrossRefGoogle Scholar
  5. 5.
    Product Information (1986) Positron Emission Tomography Planning Guide, Computer Technology and Imaging, TN.Google Scholar
  6. 6.
    Stocklin, G. (1992) Tracers for metabolic imaging of brain and heart. A review. Eur. J. Nucl. Med., 19, 527–51.CrossRefGoogle Scholar
  7. 7.
    Gould, K.L., Goldstein, R.A., Mullani, N.A. et al. (1986) Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using rubidium-82. J. Am. Coll. Cardiol., 7, 775–89.CrossRefGoogle Scholar
  8. 8.
    Goldstein, R.A., Mullani, N.A., Wong. W.-H. et al. (1986) Positron imaging of myocardial infarction with rubidium-82. J. Nucl. Med., 27, 1824–29.Google Scholar
  9. 9.
    Goldstein, R.A., Mullani, N.A., Fisher, D.J. et al. (1983) Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmaceutical interventions. J. Nucl. Med., 24, 907–15.Google Scholar
  10. 10.
    Smalling, R.W., Fuentes, F., Mathews, M.W. et al. (1983) Sustained improvement in left ventricular function and mortality by intracoronary streptokinase administration during evolving myocardial infarction. Circulation, 68, 131–38.CrossRefGoogle Scholar
  11. 11.
    Kennedy, J.W., Ritchie, J.L., David, K.B. et al. (1983) Western Washington randomized trial of intracoronary streptokinase in acute myocardial infarction. N. Engl. J. Med., 309, 1477–82.CrossRefGoogle Scholar
  12. 12.
    Sheehan, R.M. and Renkin, E.M. (1972) Capillary interstitial and cell membrane barriers to blood-tissue transport of potassium and rubidium in mammalian skeletal muscle. Circ. Res., 30, 588–607.Google Scholar
  13. 13.
    Selwyn, A.P., Allan, R.M., L’abbate, A. et al (1982) Relation between regional myocardial uptake of rubidium-82 and perfusion: absolute reduction of cation uptake in ischemia. Am. J. Cardiol., 50, 112–21.CrossRefGoogle Scholar
  14. 14.
    Coe, E.L. (1972) Inhibition of glycolysis in ascites tumor cells pre-incubated with 2-deoxy-2-fluoro-D-glucose. Biochim. Biophys. Acta, 264, 319–27.CrossRefGoogle Scholar
  15. 15.
    Gallagher, B.M., Fowler, J.S., Gutterson, N.I. et al. (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J. Nucl. Med., 19, 1154–61.Google Scholar
  16. 16.
    Lambrecht, R.M. and Wolf, A.P. (1973) Cyclotron and short-lived halogen isotopes for radiopharmaceutical applications, in Radiopharmaceuticals and Labeled Compounds, IAEA-SM-171/79, Copenhagen, Denmark.Google Scholar
  17. 17.
    Ido, T., Wan, C.N., Fowler, J.S. et al. (1977) Fluorination with F A convenient synthesis of 2-deoxy-2-fluoro-D-glucose. J. Org. Chem., 42, 2341–42.CrossRefGoogle Scholar
  18. 18.
    Phelps, M.E., Hoffman, E.J., Selin, C. et al. (1978) Investigation of [18F] 2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J. Nucl. Med., 19, 1311–19.Google Scholar
  19. 19.
    Di Chiro, G., De Lapaz, R.L., Brooks, R.A. et al. (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxy glucose and positron emission tomography. Neurology, 32, 1323–29.CrossRefGoogle Scholar
  20. 20.
    Di Chiro, G. (1987) Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. Invest. Radiol., 22, 360–70.CrossRefGoogle Scholar
  21. 21.
    Gallaghar, B.M., Ansari, A., Atkins, H. et al. (1977) Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-D-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in-vivo: tissue distribution and imaging studies in animals. J. Nucl Med., 18, 990–96.Google Scholar
  22. 22.
    Mejia, A.A., Nakamura, T., Masatoshi, I. et al. (1991) Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies. J. Nucl. Med., 32, 699–706.Google Scholar
  23. 23.
    West, J.B. and Dollery, C.T. (1962) Uptake of oxygen-15-labeled CO2 compared with carbon-11-labeled CO2 in lung. J. Appl. Physiol, 17, 14–20.Google Scholar
  24. 24.
    Bigler, R.E. and Sgouros, G. (1983) Biological analysis and dosimetry for 15O-labeled O2∲ CO2 and CO gases administered continuously by inhalation. J. Nucl. Med., 24, 431–37.Google Scholar
  25. 25.
    Harper, P.V., Lathrop, K.A., Krizek, H. et al. (1972) Clinical feasibility of myocardial imaging with 13NH3. J. Nucl Med., 13, 278–80.Google Scholar
  26. 26.
    Harper, P.V., Lathrop, K.A., Krizek, H. (1975) 13N radiopharmaceuticals, in Radiopharmaceuticals (eds G. Subramanian, B.A. Rhodes, J.F. Cooper and V.J. Sodd), The Society of Nuclear Medicine, New York, pp. 180–83.Google Scholar
  27. 27.
    Monahan, W.G., Tilbury, R.S. and Laughlin, J.S. (1972) Uptake of 13N-labeled ammonia. J. Nucl Med., 13, 274–77.Google Scholar

Copyright information

© Azuwuike Owunwanne, Mohan Patel and Samy Sadek 1995

Authors and Affiliations

  • Azuwuike Owunwanne
    • 1
  • Mohan Patel
    • 2
  • Samy Sadek
    • 3
  1. 1.Department of Nuclear Medicine, Faculty of MedicineKuwait UniversityKuwait
  2. 2.Kuwait Central Radiopharmacy Kuwait Cancer Control CenterMinistry of Public HealthKuwait
  3. 3.Department of Nuclear Medicine Faculty of MedicineKuwait UniversityKuwait

Personalised recommendations