Skip to main content

Abstract

Antibodies (Abs) are immunoglobulin (Ig) molecules that are formed in response to the presence of foreign substances (antigen, Ag) in the blood. The antibodies have binding sites that recognize the Ag(s) and bind specifically with them. There are five classes of immunoglobulins: gamma, IgG; mu, IgM; alpha, IgA; delta, IgD; and epsilon, IgE [11. The antibodies have Variable’ and ‘constant’ regions of light and heavy chains. The variable region (Fab) contains amino-terminal portions responsible for the antibody’s specificity (the specific binding sites for the antigens). The constant region (Fc) controls the binding of complement, the transport of the antibody molecule across membranes and the binding of antibody to membranes (non-specific binding). The Fab and Fc fragments of an IgG molecule are obtained by enzymatic cleavage using papain, while the Fab’ fragment is obtained using pepsin, as shown in Figure 11.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leder, P. (1982) The genetics of antibody diversity. Sci. Am., 246, 3–115.

    Article  Google Scholar 

  2. Pressman, D. and Korngold, L. (1953) The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer, 6, 7619–23.

    Article  Google Scholar 

  3. Goldenberg, D.M. (1978) Immunodiagnosis and immunodetection of colorectal cancer. Cancer Bull, 30, 213–18.

    Google Scholar 

  4. Goldenberg, D.M., Kim, E.E. and DeLand F.H. et al. (1980) Radioimmunodetection of cancer with radioactive antibodies to carcinoembry-onic antigen. Cancer Res., 40, 2984–92.

    Google Scholar 

  5. Goldenberg, D.M., Kim, E.E., DeLand F.H. et al. (1980) Clinical studies of the radioimmunodetection of tumors containing alpha-fetoprotein. Cancer, 45, 497–501.

    Article  Google Scholar 

  6. Chetanneau, A., Baum, R.P., Lehur, P.A. et al. (1990) Multi-centre immunoscintigraphic study using indium-111-labeled CEA-specific and/or 19.9 monoclonal antibody F (ab’)2 fragments. Eur. J. Nud. Med., 17, 223–29.

    Article  Google Scholar 

  7. Larson, S.M. (1991) Radioimmunology imaging and therapy. Cancer, 67, 1253–60.

    Article  Google Scholar 

  8. Goldenberg, D.M. and Larson, S. (1992) Radioimmunodetection in cancer identification. J. Nucl. Med., 33, 803–14.

    Google Scholar 

  9. Hinkle, G.H., Loesch, J.A., Hill, T.L. et al. (1990) Indium-111-monoclonal antibodies in radio-mmunoscintigraphy. J. Nucl. Med. Tech., 18, 16–25.

    Google Scholar 

  10. Benz, P., Oberhausen, E. and Berberich, R. (1991) Monoclonal antibody BW431/26 labelled with technetium-99m and indium-111: an investigation of the biodistribution and the dosimetry in patients. Eur. J. Nucl. Med., 18, 813–16.

    Article  Google Scholar 

  11. Khaw, B.A., Yasuda, T., Gold, H.K. et al. (1989) Acute myocardial infarct imaging with indium-111-labeled monoclonal antimyosin Fab. J. Nucl. Med., 28, 1671–78.

    Google Scholar 

  12. Yokoyama, K., Reynolds, J.C., Paik, C.H. et al. (1980) Immunoreactivity affects the biodistrib-ution and tumour targeting of radiolabeled anti-P97 Fab fragment. J. Nucl. Med., 31, 220–22.

    Google Scholar 

  13. Goldenberg, D.M. (1988) Targeting of cancer with radiolabeled antibodies: prospects for imaging and therapy. Arch. Pathol. Lab. Med., 112, 580–87.

    Google Scholar 

  14. Goldenberg, D.M., DeLand F., Kim, E.E. et al. (1978) Use of radiolabeled antibodies to carci-noembryonic antigen for detection and localisation of diverse cancers by external photoscanning. N. Engl. J. Med., 298, 1384–88.

    Article  Google Scholar 

  15. Sharkey, R.M., Goldenberg, D.M., Goldenberg, H. et al. (1990) Murine monoclonal antibodies against carcinoembryonic antigen. Immunological, pharmacokinetic, and targeting properties in humans. Cancer Res., 50, 2823–31.

    Google Scholar 

  16. Weinstein, J.N., Eger, R.R., Covell, D.G. et al. (1989) The pharmacology of monoclonal antibodies. Ann. NY Acad. Sci., 507, 199–210.

    Article  Google Scholar 

  17. Frist, W., Yasuda, T., Segall, G. et al. Noninvasive detection of human cardiac transplant rejection with In-111-labeled monoclonal anti-myosin (Fab) imaging. Circulation, 76, 81–5.

    Google Scholar 

  18. Oster, Z.H., Srivastava, S.C., Som, P. et al. (1983) Thrombus radioimmunoscintigraphy: an approach using monoclonal antiplatelet antibody. Proc. Natl. Acad. Sci. USA, 82, 3465–88.

    Article  Google Scholar 

  19. Rosebrough, S.F., Grossman, Z.D., McAfee, J.G. et al. (1988) Thrombus localization with indium-111 and iodine-131-labeled fibrin-specific monoclonal antibody and its (Fab’)2 and Fab fragments. J. Nucl. Med., 29, 1212–22.

    Google Scholar 

  20. Locher, J.T., Seybold, K., Andres, R.Y. et al. (1986) Imaging of inflammatory and infectious lesions after injection of radiolabeled monoclonal antigranulocyte antibodies. Nucl. Med. Commun., 7, 659–60.

    Google Scholar 

  21. Joseph, K., Koffen, H., Bosslet, K. et al. (1978) In vivo labeling of granulocytes with Tc-99m anti-NCA monoclonal antibodies for imaging inflammation. Eur. J. Nucl. Med., 14, 367–73.

    Google Scholar 

  22. Fischman, A.J., Rubin, R.H., Khaw, B.A. et al. (1988) Detection of acute inflammation with In-111-labeled non-specific polyclonal IgG. Semin. Nucl. Med., 18, 335–44.

    Article  Google Scholar 

  23. Fischman, A.J., Khaw, B.A., Strauss, H.W. et al. (1989) Quo vadis radioimmune imaging. J. Nucl. Med., 30, 1911–15.

    Google Scholar 

  24. Goldenberg, D.M., Sharkey, R. and Ford, E. (1987) Anti-antibody enhancement of iodine-131 anti CEA radioimmunodetection in experimental and clinical studies. J. Nucl. Med., 28, 1604–10.

    Google Scholar 

  25. Wahl, R.L., Parker, C.W. and Philpott, G.W. (1983) Improved radioimaging with tumour localization with monoclonal F (ab’) J. Nucl. Med., 24, 316–25.

    Google Scholar 

  26. Bucheggar, F., Haskell, C.M., Schreyer, M. et al. (1983) Radiolabeled fragments of monoclonal antibodies against carcinoembroyonic antigens for localization of human colon carcinoma grafted to nude mice. J. Exp. Med., 158, 413–27.

    Article  Google Scholar 

  27. Bucheggar, F., Pfister, C., Fournier, K. et al. (1989) Ablation of human colon carcinoma in nude mice by I-131-labeled monoclonal anti-carcino-embryonic antigen antibody F (ab’)2 fragments. J. Clin. Invest., 83, 1449–56.

    Article  Google Scholar 

  28. Delaloye, B., Bischof-delaloye, A., Bacheggar, F. et al. (1988) Detection of colorectal carcinoma by emission computerized tomography after injection of I-123-labeled Fab or F(ab’)2 fragments from monoclonal anti-carcino-embryonic antigen antibodies. J. Clin. Invest., 77, 301–11.

    Article  Google Scholar 

  29. Larson, S.M., Carrasquillo, J.A., Krohn, K.A. et al. (1983) Localization of I-131-labeled P97 specific Fab fragments in human melanoma as a basis for radiotherapy. J. Clin. Invest., 72, 2101–14.

    Article  Google Scholar 

  30. Bucheggar, F., Pelegrin, A., Delaloye, B. et al. (1990) Iodine-131-labeled MAb F (ab’)2 fragments are more efficient and less toxic than intact anti-CEA antibodies in radioimmunother-apy of large human colon carcinoma grafted in nude mice. J. Nucl. Med., 31, 1035–44.

    Google Scholar 

  31. Warren, L., Back, C.A. and Tuszynski, G.P. (1978) Glycopeptide changes and malignant transformation. A possible role for carbohydrate in malignant behaviour. Biochim. Biophys. Acta, 516, 97–127.

    Google Scholar 

  32. Goldenberg, D.M., Goldenberg, H., Sharkey, R.M. et al. (1990) Clinical studies of cancer ra-dioimmuno detection with carcinoembryonic antigen monoclonal antibody fragments labelled with I-123 or Tc-99m. Cancer Res., 50, 909–21.

    Google Scholar 

  33. Pinsky, C.M., Goldenberg, D.M., Wlodkowski, T.J. et al. (1991) Detection of occult metastasis of colorectal cancer by the use of anti-CE A Fab’ fragments labelled with Tc-99m (Abstract). J. Nucl. Med., 32, 1053.

    Google Scholar 

  34. Baum, R.P., Hertel, A., Lorenz, M. et al. (1989) Tc-99m-labelled anti-CEA monoclonal antibody for tumour immunoscintigraphy: first clinical results. Nucl. Med. Commun., 10, 345–52.

    Article  Google Scholar 

  35. Carney, P.L., Rogers, P.E. and Johnson, D.K. (1989) Dual isotope study of Iodine-125 and Indium-111-labelled antibody in athymic mice. J. Nucl. Med., 30, 374–84.

    Google Scholar 

  36. Hnatowich, D.J. and McGraw, J. (1988) DTPA-coupled proteins procedures and precautions. Nucl Med. Biol., 14, 563–68.

    Google Scholar 

  37. Fritzberg, H.R. and Beamier, P.L. (1992) Targeted proteins for diagnostic imaging: does chemistry make a difference? (editorial). J. Nucl Med., 33, 394–97.

    Google Scholar 

  38. Hunter, W.M. and Greenwood, F.C. (1962) Preparation of iodine-131-labelled growth hormone of high specific radioactivity. Nature, 194, 495–96.

    Article  Google Scholar 

  39. Matzku, S., Kirchgessner, H., Digold, W.G. et al. (1985) Immunoreactivity of monoclonal anti-melanoma antibodies in relation to the amount of radioactive iodine substituted to the antibody molecule. Eur. J. Med., 11, 260–64.

    Article  Google Scholar 

  40. Markwell, A.A.K. (1982) A new solid-state reagent to iodinate proteins. Ann. Biochem., 125, 427–32.

    Article  Google Scholar 

  41. Lee, D.S.C. and Griffiths, J. (1984) Comparative studies of iodobeads and chloramine-T methods for the radioiodination of human alphafetoprotein. J. Immunol Methods, 74, 181–89.

    Article  Google Scholar 

  42. Haisma, H.J., Hilgers, J. and Zurawski, V.R. (1986) Iodination of monoclonal antibodies for diagnosis and radiotherapy using convenient one-vial method. J. Nucl. Med., 27, 1890–95.

    Google Scholar 

  43. Thorell, J.I. and Johanson, B.G. (1972) Enzymatic iodination of polypeptides with I-123 to high specific activity. Biochem. Biophys. Res. Commun., 48, 464–71.

    Article  Google Scholar 

  44. Newman, P.J., Kahn, R.A. and Hines, A.J. (1981) Detection and characterization of monoclonal antibodies to platelet membrane proteins. J. Cell. Biol., 90, 249–53.

    Article  Google Scholar 

  45. Bhargawa, K.K. and Acharya, S.A. (1989) Labelling of monoclonal antibodies with radionuclides. Semin. Nucl. Med., 19, 187–201.

    Article  Google Scholar 

  46. Hodalgo, J.U. and Nadler, S.B. (1962) Stability studies on I-131 labelled albumin. J. Nucl. Med., 3, 268–72.

    Google Scholar 

  47. DeNardo, G.L., Young, W.C, DeNardo, S.J. et al. (1986) Urinary metabolities after injection of mono clonal antibodies (MAB) or fibrinogen (F) radioiodinated with a small and large number of iodine atoms (abstract). J. Nucl. Med., 27, 958.

    Google Scholar 

  48. Engler, D. and Burger, A.G. (1984) The deiodin-ation of the iodothryonines and of their derivatives in man. Endocrine Rev., 5, 151–84.

    Article  Google Scholar 

  49. Bolton, A.E. and Hunter, W.M. (1973) The labeling of proteins to high specific radioactivities by conjugation to I-125 containing acylating agent. Biochem. J. 33, 529–37.

    Google Scholar 

  50. Bhargava, K.K. and Chervu, L.R. (1987) N-hydroxysuccinimide hippuran ester: application for radiolabelling of macromolecules. Biochem. Biophys. Res. Commun., 144, 323–28.

    Article  Google Scholar 

  51. Wilbur, D.S., Hadley, S.W. and Hylarides, M.D. (1989) Development of a stable radioiodi-nating reagents to label monoclonal antibodies for radiotherapy of cancer. J. Nucl. Med., 30, 216–26.

    Google Scholar 

  52. Krejcanek, G.E., Tucker, K.L. (1977) Covalent attachment of chelating groups to macromolecules. Biochem. Biophys. Res. Commun., 77, 581–85.

    Article  Google Scholar 

  53. Hnatowich, D.J., Layne, W.W., Childs, R.L. (1982) The preparation and labelling of DTPA-coupled albumin. Int. J. Appl. Radiat. Isot., 33, 327–32.

    Article  Google Scholar 

  54. Paik, C.H., Ebbert, M.A., Murphy, P.R. et al. (1983) Factors influencing DTPA conjugation with antibodies by cyclic DTPA anhydride. J. Nucl. Med., 24, 1158–63.

    Google Scholar 

  55. Scheinberg, D.A., Strand, M. and Gansow, O.A. (1982) Tumour imaging with radioactive metal chelates conjugated to monoclonal antibodies. Science, 215, 1511–13.

    Article  Google Scholar 

  56. Khaw, B.A., Gansow, O.A., Brechbiel, M.W. et al. (1990) Use of isothiocyanato benzyl-DTPA derivatized monoclonal antimyosin Fab for enhanced in-vivo target localization. J. Nucl. Med., 31, 211–17.

    Google Scholar 

  57. Mirzadeh, S.M., Brechbiel, M.W., Atcher, R.A. et al. (1990) Radiometal labelling of immunoproteins: covalent linkage of 2-(4-isothiocyanatobenzyl) DTPA ligands to immunoproteins. Bioconjug. Chem., 1, 59–65.

    Article  Google Scholar 

  58. Gansow, O.A. (1991) Newer approaches to the radiolabelling of monoclonal antibodies by use of metal chelates. Nucl. Med. Biol., 18, 369–81.

    Google Scholar 

  59. Eckelman, W.C., Karesh, S.M. and Reba, R.C. (1975) New compounds: fatty acid and long chain hydrocarbon derivatives containing a strong chelating agent. J. Pharmacol. Sci., 64, 704–6.

    Article  Google Scholar 

  60. Khaw, B.A., Strauss, H.W., Moore, R. et al. (1987) Myocardial damage delineated by indium-111 antimyosin Fab and technetium-99m, pyrophosphate. J. Nucl. Med., 28, 76–82.

    Google Scholar 

  61. Product Information (1986) Myoscint. Centocor Europe, Leiden, The Netherlands.

    Google Scholar 

  62. Khaw, B.A., Beller, G.A., Haber, E. et al. (1976) Localisation of cardiac myosin specific antibody in myocardial infarction. J. Clin, Invest., 58, 439–46.

    Article  Google Scholar 

  63. Owunwanne, A., Malki, A., Sadek, S. et al. (1989) Investigative study of radiopharmaceuticals useful for imaging skeletal muscle injury in experimental animals. Am. J. Physiol. Imaging., 4,62-5

    Google Scholar 

  64. Elgazzar, A.M., Malki, A.A., Abdel-Dayem, H.M. et al. (1989) Indium-111 monoclonal antimyosin antibody in assessing skeletal muscle damage in trauma. Nucl Med. Commun., 10, 477–85.

    Article  Google Scholar 

  65. Allen, M.D., Tsubi, H., Togo, T. et al. (1989) Detection of cardiac allograft rejection and myocyte necrosis by monoclonal antibody to cardiac myosin. Transplantation, 48, 923–28.

    Article  Google Scholar 

  66. Yasuda, T., Palacios, I.F, Dec, G.W. et al (1987) Indium-111 monoclonal antimyosin antibody imaging in the diagnosis of acute myocarditis. Circulation, 76, 306–11.

    Article  Google Scholar 

  67. Khaw, B.A., Strauss, H.W., Pohost, G.M. et al. (1983) Relation of immediate and delayed thallium-201 distribution to localisation of iodine-125 antimyosin antibody in acute experimental myocardial infarction. Am. J. Cardiol, 51, 1428–32.

    Article  Google Scholar 

  68. Khaw, B.A. and Narula, J. (1991) Of antimyosin imaging and histopathology of myocardial infarction: when, where and why? J. Nucl Med., 32, 867–70.

    Google Scholar 

  69. Shively, J.E. and Beatty, J.D. (1985) CEA-related antigens: molecular biology and clinical significance: Crit. Rev. Oncol. Hematol., 2, 355–99.

    Article  Google Scholar 

  70. Hnatowich, D.J., Layne, W.W., Childs, R.L. et al. (1983) Radioactive labelling of antibody: a simple and efficient method. Science, 220, 613–15.

    Article  Google Scholar 

  71. Hnatowich, DJ., Childs, R.L., Lanteigne, D. et al. (1983) The preparation of DTPA-coupled antibodies radiolabeled with metallic radionuclides: an improved method. J. Immunol Methods, 65, 145–47.

    Article  Google Scholar 

  72. Kuhlmann, L. and Steinstrasser, A. (1988) Effect of DTPA to antibody ratio on chemical, immunological and biological properties of In-111-labelled F(ab’)2 fragment of the antibody 431.31. Nucl. Med. Biol., 15, 617–27.

    Google Scholar 

  73. Bosslet, K., Steinstrasser, A., Schwarz, A. et al. (1985) Immunohistochemical localisation and molecular characteristics of three monoclonal antibody-defined epitopes detectable on carci-noembryonic antigen (CEA). Int. J. Cancer., 36, 75–84.

    Article  Google Scholar 

  74. Esteban, J.M., Schlom, J., Gansow, O.A. et al. (1987) New method for the chelation of indium-111 to monoclonal antibodies: biodis-tribution and imaging of athymic mice bearing human colon carcinoma xenografts. J. Nucl. Med., 28, 861–70.

    Google Scholar 

  75. Bo-Anders, J., Strand, S.E., Anderson, L. (1992) Radiation dosimetry for indium-111-labelled anti-CEA-F(ab’)2 fragments evaluated from tissue distribution in rats. J. Nucl Med., 33, 1654–60.

    Google Scholar 

  76. Ingvar, C., Wingardh, K., Ljungberg et al. (1991) Quantitative biokinetic study of In-111-F(ab’)2 in patients with colorectal cancer. Antibody Immunoconj. Radiopharmacol, 4, 587–93.

    Google Scholar 

  77. Hnatowich, D.J., Griffin, T.W., Kosciuczyk, C. et al. (1985) Pharmacokinetics of an indium-111-labelled monoclonal antibody in cancer patients. J. Nucl. Med., 26, 849–58.

    Google Scholar 

  78. Nabi, H.A. and Doerr, R.J. (1992) Radiolabeled monoclonal antibody imaging (immunoscinti-graphy) of colorectal cancers: current status and future perspectives. Am. J. Surg., 163, 448–56.

    Article  Google Scholar 

  79. Goldenberg, D.M., Goldenberg, H., Sharkey, R.M. et al. (1989) Imaging of colorectal carcinoma with radiolabelled antibodies. Semin, Nucl. Med., 19, 262–81.

    Article  Google Scholar 

  80. Product Information (1992) Oncoscint CR/OV, Cytogen, New Jersey.

    Google Scholar 

  81. Yokoyama, K., Carrasquillo, J.A., Chang, A.E. et al. (1989) Differences in biodistribution of indium-111-and iodine-131-labelled B72.3 monoclonal antibodies in patients with colorectal cancer. J. Nucl. Med., 30, 320–27.

    Google Scholar 

  82. Verbruggen, A.M. (1990) Radiopharmaceuticals: state of the art. Eur. J. Nucl. Med., 17, 346–60.

    Article  Google Scholar 

  83. Rhodes, B.A. and Burchiel, S.W. (1983) Radiolabeling of antibodies with technetium-99m, in Radioimmunoimaging and Radioimmu-notherapy (eds S.W. Burchiel and B.A. Rhodes), Elsevier, New York, pp. 207–22.

    Google Scholar 

  84. Rhodes, B.A., Zamora, P.O., Newell, K.D. et al. (1989) Technetium-99m labelling of marine monoclonal antibody fragments. J. Nucl. Med., 27, 685–93.

    Google Scholar 

  85. Pak, K.Y., Nedelmen, M.A., Stewarz, R. et al. (1986) A rapid and efficient method for labelling IgG antibodies with Tc-99m and comparison to Tc-99m Fab’ antibody fragments (abstract). J. Nucl. Med., 30, 793.

    Google Scholar 

  86. Schwarz, A. and Steinstrasser, A. (1987) A novel approach to Tc-99m-labelled monoclonal antibodies (abstract). J. Nucl. Med., 28, 721.

    Google Scholar 

  87. Thakur, M.L., Defulvio, J. and Park, C.H. (1990) Use of ascorbic acid (AA) for direct Tc-99m labeling of monoclonal antibodies (MAbs) (abstract). Eur. J. Nucl. Med., 16, 392.

    Google Scholar 

  88. Goedemans, W.T., Panek, K.J., Ensing, G.J. et al. (1990) A new simple method for labelling of proteins with Tc-99m by derivatization with I-imino-4-mercaptobutyl groups, in Technetium and Rhenium in Chemistry and Nuclear Medicine, Vol. 3 (eds M. Nicolini, G. Bandolini and U. Mazzi), Cortina International, Verona and Raven Press, New York, pp. 595–604.

    Google Scholar 

  89. Joiris, E., Bastin, B. and Thornback, J.R. (1990) A new method for labelling of monoclonal antibodies, their fragments and other proteins with technetium-99m, in Technetium and Rhenium in Chemistry and Nuclear Medicine, Vol. 3 (eds M. Nicolini, G. Bandolini and U. Mazzi), Cortina International, Verona and Raven Press, New York, pp. 609–14.

    Google Scholar 

  90. Fritzberg, A.R., Abrams, P.G., Beaunier, P.C. et al. (1988) Specific and stable labeling of antibodies with technetium-99m with a di-amidedithiolate chelating agent. Proc. Natl Acad. Sci. USA, 85, 4025–29.

    Article  Google Scholar 

  91. Dean, R.T., Weber, R., Pak, K. et al. (1990) New facile methods for stably labelling antibodies with technetium-99m, in Technetium and Rhenium in Chemistry and Nuclear Medicine, Vol. 3 (eds M. Nicolini, G. Bandolini and U. Mazzi), Cortina International, Verona and Raven Press, New York, pp. 605–8.

    Google Scholar 

  92. Esienhart, M., Brandan, W., Missfeldt, M. (1989) Synthesis and in-vivo testing of bro-mobutyl amine substituted 1, 2-dithio-5, 9-diazacycloundecane: a verstile precursor for new Tc-99m-bis (aminoethanethiol) complexes. Nucl. Med. Biol., 16, 805–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Azuwuike Owunwanne, Mohan Patel and Samy Sadek

About this chapter

Cite this chapter

Owunwanne, A., Patel, M., Sadek, S. (1995). Antibodies. In: The Handbook of Radiopharmaceuticals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0414-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0414-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0416-7

  • Online ISBN: 978-1-4757-0414-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics