Immobilized Enzymes

  • Melvin H. Keyes
  • Seshaiyer Saraswathi

Abstract

The literature abounds with procedures to immobilize enzymes which generally fit into one of six main categories. The earliest methods developed were enzyme adsorption and cross-linking. Adsorption-cross-linking, the combination of these methods, results in a more utilitarian catalyst. The most widely used method is covalent bonding of the enzyme to a support material; but entrapment and microencapsulation are valuable techniques for immobilization of enzymes.

The properties of immobilized enzymes are affected by the support material. In essence, the physical properties are those of the support material. Inorganic supports result in rigid catalysts with moderate enzyme loading. Very high enzyme loading can be achieved with organic supports which are easily molded into desired shapes. The support used for immobilization of enzymes also affects the chemical properties of the catalyst. The optimum pH is often different for an immobilized enzyme than for the soluble enzyme and changes in substrate specificity have also been observed.

Immobilized enzymes find applications both in industrial processing and analytical testing. In addition, immobilized enzymes have been used for analysis of the structure-function relationships of enzymes. Although showing considerable promise, therapeutic applications generally remain in the research stage.

Keywords

Fermentation Fibril Histidine Polyurethane Dextran 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Wiseman, in: Handbook of Enzyme Biotechnology (A. Wiseman, ed.), pp. 111–124, Wiley, New York (1975).Google Scholar
  2. 2.
    M. Keyes, Encyclopedia of Chemical Technology, Vol. 9, 148–172, Wiley, New York (1980).Google Scholar
  3. 3.
    T. Everse, C. L. Ginsburg, and N. O. Kaplan, Methods Biochem. Anal. 25, 135–201 (1977).Google Scholar
  4. 4.
    J. S. Holcenberg and J. Roberts, ed., Enzymes as Drugs, pp. 1–353, Wiley, New York (1981).Google Scholar
  5. 5.
    P. J. Lisi, T. van Es, A. Abuchowski, N. C. Palczuk, and F. F. Davis,J. Appl Biochem. 4, 19–33 (1982).Google Scholar
  6. 6.
    C. H. W. Hirs, ed., Methods in Enzymology, Vol. 11, pp. 481–640, Academic Press, New York (1967).Google Scholar
  7. 7.
    C. H. W. Hirs and S. N. Timasheff, ed., Mewthods in Enzymology, Vol. 25, pp. 339–651, Academic Press, New York (1972).Google Scholar
  8. 8.
    M. A. Mitz and L. J. Summaria, Nature {London) 169, 576–577 (1961).Google Scholar
  9. 9.
    P. W. Carr and L. D. Bowers, Immobilized Enzymes in Analytical and Clinical Chemistry, Wiley, New York (1980).Google Scholar
  10. 10.
    L. B. Wingard, E. Katchalski-Katzir and L. Goldstein, eds., Applied Biochemical Bioengineering, Vol. 1, Academic Press, New York (1976).Google Scholar
  11. 11.
    I. Chibata, Immobilized Enzymes, Wiley, New York (1978).Google Scholar
  12. 12.
    T. K. Ghose, A. Fiechter, and N. Blakebrough, eds., Advanced Biochemical Engineering, Vol. 10, Springer-Verlag, New York (1978).Google Scholar
  13. 13.
    R. A. Messing, ed., Immobilized Enmzymes for Industrial Reactors, Academic Press, New York (1975).Google Scholar
  14. 14.
    K. Mosbach, ed., Methods in Enzymology, Vol. 44, Academic Press, New York (1976).Google Scholar
  15. 15.
    L. B. Wingard, Jr., E. Katchalski-Katzir, and L. Goldstein, eds. Applied Biochemical Bioengineering, Vol. 3, Academic Press, New York (1981).Google Scholar
  16. 16.
    A. C. Olson and C. L. Cooney, eds., Immobilized Enzymes Food Microbiology Processes, (Proceedings of Symposium), Plenum Press, New York (1974).Google Scholar
  17. 17.
    M. Salmona, C. Saronio, and S. Garottini, eds., Insolubilized Enzymes, Raven Press, New York (1974).Google Scholar
  18. 18.
    T. M. S. Chang, ed., Biomedical Applied Immobilized Enzymes Proteins, Vol. 1, Plenum Press, New York (1977).Google Scholar
  19. 19.
    R. A. Messing, in: Advanced Biochemical Engineering (T. K. Ghose, A. Fiechter, and N. Blakebrough, eds.), Vol. 10, pp. 51–73, Springer-Verlag, New York (1978).Google Scholar
  20. 20.
    G. P. Royer, G. M. Green, and B. K. Sinha, in: Polymer Grafts in Biochemistry (H. F. Hixson, Jr. and E. P. Goldberg, eds.), pp. 289–307, Marcel Dekker, New York (1976).Google Scholar
  21. 21.
    O. Zaborsky, in: Biomedical Applications of Immobilized Enzymes and Proteins (T. M. S. Chang, ed.), p. 37, Plenum Press, New York (1977).Google Scholar
  22. 22.
    R. A. Messing, Biotechnol. Bioeng. 16, 897–908 (1974).Google Scholar
  23. 23.
    P. Grunwald, W. Gunsser, F. R. Heiker, and W. Roy, Anal. Biochem. 100, 54–57 (1979).Google Scholar
  24. 24.
    G. A. Kovalenki, N. B. Shitova, and U. D. Sokolowski, Biotechnol. Bioeng. 23, 1721–1734 (1981).Google Scholar
  25. 25.
    R. Uy and F. Wold, in: Advanced Experimental Medical Biology (M. Friedman, ed.), Vol. 86A, pp. 169–186, Plenum Press, New York (1977).Google Scholar
  26. 26.
    F. M. Richards and J. R. Knowles,J. Mol. Biol. 37, 231–233 (1968).Google Scholar
  27. 27.
    P. Monsan, G. Puzo, and H. Mozargui, Biochimie 57, 1281–1292 (1975).Google Scholar
  28. 28.
    R. Haynes and K. A. Walsh, Biochem. Biophys. Res. Commun. 36, 235–242 (1969).Google Scholar
  29. 29.
    R. Haynes and K. A. Walsh, U.S. Patent No. 3,796,634 (1974).Google Scholar
  30. 30.
    M. H. Keyes, U.S. Patent No. 3,933,589 (1976).Google Scholar
  31. 31.
    M. H. Keyes, U.S. Patent No. 4,008,126 (1977).Google Scholar
  32. 32.
    M. H. Keyes, U.S. Patent No. 4,204,040 (1980).Google Scholar
  33. 33.
    R. A. Messing, U.S. Patent No. 3,804,719 (1974).Google Scholar
  34. 34.
    G. Brown, E. Selegny, S. Avrameas, and D. Thomas, Biochim. Biophys. Acta 185, 260–262 (1969).Google Scholar
  35. 35.
    J. Porath, in: Methods in Enzymology (W. B. Jacoby and M. Wilchek, eds.), Vol. 34, pp. 13–30, Academic Press, New York (1974).Google Scholar
  36. 36.
    J. Porath and R. Axen, in: Methods in Enzymology (K. Mosbnach, ed.), Vol. 44, pp. 19–42, Academic Press, New York (1976).Google Scholar
  37. 37.
    M. D. Lilly, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 46–53, Academic Press, New York (1976).Google Scholar
  38. 38.
    I. Chibata, Immobilized Enzymes, pp. 15–46, Wiley, New York (1978).Google Scholar
  39. 39.
    R. Axen and S. Ernback, Eur. J. Biochem. 1971, 21 351–360.Google Scholar
  40. 40.
    R. Axen, J. Porath, and S. Ernback, Nature(London) 214, 1302–1304 (1967).Google Scholar
  41. 41.
    R. Axen and P. Vretblad, Acta Chem. Scand. 25, 2711–2716 (1971).Google Scholar
  42. 42.
    R. L. Schnaar, T. F. Sparks, and S. Roseman, Anal. Biochem. 79, 513–525 (1977).Google Scholar
  43. 43.
    M. Wilchek, T. Oka, and Y. J. Trooper, Proc. Natl. Acad. Sci. U.S.A. 72, 1055–1058 (1975).Google Scholar
  44. 44.
    K. Kohn and M. Wilchek, Biochem. Biophys. Res. Commun. 84, 7–14 (1978).Google Scholar
  45. 45.
    J. Kohn and M. Wilchek, Anal. Biochem. 115, 375–382 (1981).Google Scholar
  46. 46.
    J. Kohn and M. Wilchek, Enzyme Microb. Technol. 4, 161–164 (1982).Google Scholar
  47. 47.
    H. Rosemeyer, E. Körnig, and F. Seela, Eur. J. Biochem. 122, 375–380 (1982).Google Scholar
  48. 48.
    L. R. Benkova, M. Mrackova, and K. Baber, Collect. Czech. Chem. Commun. 45, 160–167 (1980).Google Scholar
  49. 49.
    M. Iwaki and M. Nozaki,J. Biochem.(Tokyo) 91, 1549–1553 (1982).Google Scholar
  50. 50.
    M. Wilchek, in: Enzyme Engineering (E. K. Pye and H. H. Weetall, eds.), Vol. 3, pp. 283–289, Plenum Press, New York (1978).Google Scholar
  51. 51.
    J. F. Kennedy and J. A. Barnes, Int. J. Biol. Macromol. 2, 289–296 (1980).Google Scholar
  52. 52.
    T. Oka and Y. J. Trooper, Proc. Natl. Acad. Sci. U.S.A. 71, 1630–1636 (1974).Google Scholar
  53. 53.
    M. Wilchek and T. Miron, in: Methods in Enzymology (W. B. Jakoby and M. Wilchek, eds.), Vol. 34, pp. 72–76, Academic Press, New York (1974).Google Scholar
  54. 54.
    O. Hannibal-Friedrich, M. Chun, and M. Sernetz, Biotechnol. Bioeng. 22, 157–175 (1980).Google Scholar
  55. 55.
    I. Matsumoto, H. Kitagaki, Y. Akai, Y. Ito, and N. Seno, Anal. Biochem. 116, 103–110 (1981).Google Scholar
  56. 56.
    I. Matsumoto, Y. Mizuno, and H. Seno, J. Biochem. (Tokyo) 85, 1091–1098 (1979).Google Scholar
  57. 57.
    L. Sundberg and J. Porath, J. Chromatogr. 90, 97–98 (1974).Google Scholar
  58. 58.
    K. Nilsson, O. Norrlow, and K. Mosbach, Acta Chem. Scand., Ser, B 35, 19–27 (1981).Google Scholar
  59. 59.
    K. Nilsson and K. Mosbach, Biochem. Biophys. Res. Commun. 102, 449–457 (1981).Google Scholar
  60. 60.
    L. Bulow and K. Mosbach, Biochem. Biophys. Res. Commun. 107, 456–464 (1982).Google Scholar
  61. 61.
    T. H. Finlay, V. Troll, M. Levey, A. J. Johnson, and L. T. Hodgins, Anal. Biochem. 87, 77–90 (1978).Google Scholar
  62. 62.
    G. Kay and M. D. Lilly, Biochim. Biophys. Acta 198, 276–285 (1970).Google Scholar
  63. 63.
    C. Smith and H. M. Lenhoff, Anal. Biochem. 61, 302–305 (1974).Google Scholar
  64. 64.
    P. Cuatrecasas and I. Parikh, Biochemistry 11, 2291–2298 (1972).Google Scholar
  65. 65.
    R. G. Frost, J. F. Monthony, S. C. Engelhorn, and C. J. Siebert, Biochim. Biophys. Acta 670, 163–169 (1981).Google Scholar
  66. 66.
    S. A. Berker, H. C. Tun, D. H. Doss, C. J. Gray, and J. F. Kennedy, Carbohydr. Res. 17, 471–474 (1971).Google Scholar
  67. 67.
    J. F. Kennedy and A. Zamir, Carbohydr. Res. 29, 497–501 (1973).Google Scholar
  68. 68.
    C. J. Grey and T. H. Yeo, Carbohydr. Res. 27, 2325–238 (1973).Google Scholar
  69. 69.
    J. Porath, T. Laas, and J. C. Janson,J. Chromatogr. 103, 49–62 (1975).Google Scholar
  70. 70.
    J. Brandt, L. Andersson, and J. Porath, Biochim. Biophys. Acta 386, 196–202 (1967).Google Scholar
  71. 71.
    M. Singh, A. R. Ray, P. Vasudevan, P. Verma, and S. K. Guha, Biomater. Med. Dev. Artif. Organs 7, 495–512 (1979).Google Scholar
  72. 72.
    F. B. Weakley and C. L. Mehltretter, Biotechnol Bioeng. 15, 1189–1192 (1973).Google Scholar
  73. 73.
    S. A. Barker and J. F. Kennedy, in: Handbook of Enzyme Biotechnology (A. Wiseman, ed.), pp. 203–209, Wiley, New York (1975).Google Scholar
  74. 74.
    L. A. Cohen, in: Methods in Enzymology (W. B. Jakoby and M. Wilchek, eds.), Vol. 34, pp. 103–108, Academic Press, New York (1974).Google Scholar
  75. 75.
    K. Brocklehurst, J. Carlsson, M. P. J. Kiersten, and E. M. Crook, Biochem. J. 133, 573–584 (1973).Google Scholar
  76. 76.
    J. S. Lin and J. F. Foster, Anal. Biochem. 63, 485–490 (1975)Google Scholar
  77. 77.
    J. Carlsson, R. Axen, and T. Unge, Eur. J. Biochem. 59, 567–572 (1975).Google Scholar
  78. 78.
    J. Carlsson, R. Axen, K. Brocklehurst, and E. M. Crook, Eur. J. Biochem. 44, 189–194 (1974).Google Scholar
  79. 79.
    R. Axen, O. Vretblad, and J. Porath, Acta Chem. Scand. 25, 1129–1132 (1971).Google Scholar
  80. 80.
    P. Vretblad and R. Axen, Acta Chem. Scand. 27, 2769–2780 (1973).Google Scholar
  81. 81.
    L. Goldstein, J. Chromatogr. 215, 31–43 (1981).Google Scholar
  82. 82.
    H. H. Weetall, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 134–148, Academic Press, New York (1976).Google Scholar
  83. 83.
    A. Wiseman, in: Topics in Enzyme Fermentation Biotechnology (A. Wiseman, ed), Vol. 2, pp. 49–57, Halsted Press, New York (1978).Google Scholar
  84. 84.
    H. H. Weetall, Nature (London) 223, 959–960 (1969).Google Scholar
  85. 85.
    H. H. Weetall, in: Advanced Experimental Medical Biology (R. B. Dunlap, ed.), Vol. 42, pp. 191–212, Plenum Press, New York (1974).Google Scholar
  86. 86.
    W. F. Line, H. Wong, and H. H. Weetall, Biochim. Biophys. Acta 242, 194–202 (1971).Google Scholar
  87. 87.
    H.H. Weetall and A. M. Filbert, in: Methods in Enzymology (W. B. Jakoby and M. Wilchek, eds.), Vol. 34, pp. 295–297, Academic Press, New York (1974).Google Scholar
  88. 88.
    M. V. Wondolowski and T. H. Woychik, Biotechnol. Bioeng. 16, 1633–1654 (1974).Google Scholar
  89. 89.
    B. E. Dale and D. H. White, Biotechnol. Bioeng. 21, 1639–1648 (1979).Google Scholar
  90. 90.
    K. Parkin and H. O. Hultin, Biotechnol. Bioeng. 21, 939–953 (1979).Google Scholar
  91. 91.
    V. Ramesh and C. Singh,J. Appl. Biochem. 4, 81–85 (1982).Google Scholar
  92. 92.
    B. Danielsson, B. Mattiason, R. Karlsson, and F. Winqvist, Biotechnol. Bioeng. 21, 1749–1766 (1979).Google Scholar
  93. 93.
    C. C. Hon and P. J. Reilly, Biotechnol. Bioeng. 21, 505–511 (1979).Google Scholar
  94. 94.
    O. V. Lomako, I. I. Menyailova, C. A. Nakhapetyan, Y. Nikitin, and A. V. Kiselev, Enzyme Microb. Technol. 4, 89–92 (1982).Google Scholar
  95. 95.
    C. D. Bowers and P. B. Johnson, Anal. Biochem. 116, 111–115 (1981).Google Scholar
  96. 96.
    G. P. Royer, F. A. Liberatore, and G. M. Green, Biochem. Biophys. Res. Commun. 64, 478–484 (1975).Google Scholar
  97. 97.
    L. D. Bowers and P. W. Carr, Anal. Chem. 48, 549–558 (1976).Google Scholar
  98. 98.
    J. M. Cabrai, J. M. Nováis, and J. P. Cardoso, Biotechnol. Bioeng. 23, 2083–2092 (1981).Google Scholar
  99. 99.
    R. D. Mason and H. H. Weetall, Biotechnol Bioeng. 14, 637–645 (1972).Google Scholar
  100. 100.
    B. Weiss, M. Hui, and A. Lajtha, Biochem. Med. 18, 330–343 (1977).Google Scholar
  101. 101.
    T. Mori, F. Sato, T. Tosa, and I. Chibata, Enzymologia 43, 217–226 (1972).Google Scholar
  102. 102.
    S. E. Brolin, A. Agren, B. Ekman, and S. Joholm, Anal. Biochem. 78, 577–581 (1977).Google Scholar
  103. 103.
    A. Szewczuk, A. Ziomek, M. Mordarski, M. Siewinski, and J. Wieczorek, Biotechnol. Bioeng. 21, 1543–1552 (1979).Google Scholar
  104. 104.
    K. F. O’Driscoll, in: Methods in Enzoymology (K. Mosbach, ed.), Vol. 44, pp. 169–175, Academic Press, New York (1976).Google Scholar
  105. 105.
    K. F. O’Driscoll, M. Izu, and R. Korus, Biotechnol. Bioeng. 14, 847–850 (1972).Google Scholar
  106. 106.
    S. Fukui, A. Tanaka, T. Iida, and E. Hasegawa, FEBS Lett. 66, 179–182 (1976).Google Scholar
  107. 107.
    I. Kaetsu, K. Minoru, and Y. Yoshida, Biotechnol. Bioeng. 21, 847–861 (1979).Google Scholar
  108. 108.
    J. Dobo, Acta Chim. Acad. Sci. Hung. 63, 453–456 (1970).Google Scholar
  109. 109.
    K. Kawashima and K. Umeda, Biotechnol. Bioeng. 16, 609–621 (1979).Google Scholar
  110. 110.
    K. Kawashima and K. Umeda, Agric. Biol. Chem. 40, 1151–1157 (1979).Google Scholar
  111. 111.
    I. Kaetsu, M. Kumakura, and M. Yoshida, Biotechnol. Bioeng. 21, 847–861 (1979).Google Scholar
  112. 112.
    H. Maeda, H. Suzuki, and A. Yamauchi, Biotechnol Bioeng. 15, 607–610 (1973).Google Scholar
  113. 113.
    H. Maeda, H. Suzuki, and A. Yamauchi, Biotechnol. Bioeng. 15, 827–829 (1973).Google Scholar
  114. 114.
    T. Yagi, Appl. Biochem. 1, 448–454 (1979).Google Scholar
  115. 115.
    V. Jancsik, Z. Belezani, and T. Keleti, J. Mol. Catal 54 297–306 (1982).Google Scholar
  116. 116.
    T. Tosa, T. Sato, K. Mori, I. Yamamoto, Y. Takata, Y. Nishida, and I. Chibata, Biotechnol. Bioeng. 21, 1697–1707 (1979).Google Scholar
  117. 117.
    Y. Y. Linko, L. Pohtola, R. Viskari, and M. Linko, FEBS Lett. 62, 77–80 (1976).Google Scholar
  118. 118.
    E. K. Bauman, L. H. Goodson, G. G. Guilbault, and D. N. Kramer, Anal. Chem. 37, 1378–1381 (1965).Google Scholar
  119. 119.
    A. Pollak, H. Blumenfeld, M. Wax, R. Bughn, and G. M. Whiteside,J. Am. Chem. Soc. 102, 6326–6336 (1980).Google Scholar
  120. 120.
    L. D’Angiuro, P. Cremonesi, G. Mazzola, B. Fochev, and G. Vecchio, Biotechnol. Bioeng. 22, 2251–2272 (1980).Google Scholar
  121. 121.
    L. D’Angiuro, G. Mazzola, G. Vecchio, B. Fochev, and P. Cremonesi, J. Appl. Biochem. 2, 208–217 (1980).Google Scholar
  122. 122.
    T. M. S. Chang, Nature (London) 229, 117–118 (1971).Google Scholar
  123. 123.
    T. Mori, T. Tosa, and I. Chibata, Biochim. Biophys. Acta 321, 653–661 (1973).Google Scholar
  124. 124.
    R. D. Aisina and G. B. Nakdarni, Biotechnol. Bioeng. 23, 431–436 (1981).Google Scholar
  125. 125.
    I. Chibata, Immobilized Enzymes, pp. 57–59, Wiley, New York (1978).Google Scholar
  126. 126.
    D. Dinelli, W. Marconi, and F. Morisi, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 227–231, Academic Press, New York (1978).Google Scholar
  127. 127.
    G. Gregoriadis, N. Engl. J. Med. 295, 706–710 (1976).Google Scholar
  128. 128.
    G. Gregoriadis, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 218–227, Academic Press, New York (1976).Google Scholar
  129. 129.
    M. B. Fiddler, C. D. S. Hudson, and R. J. Desnick, Biochim. J. 168, 191–195 (1977).Google Scholar
  130. 130.
    M. H. Keyes, U.S. Patent No. 3,839,175 (1974).Google Scholar
  131. 131.
    I. Karube and S. Suzuki, Biochem. Biophys. Res. Commun. 47, 51–54 (1972).Google Scholar
  132. 132.
    W. R. Vieth and K. Venkatasubramanian, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 248–250, Academic Press, New York (1976).Google Scholar
  133. 133.
    A. M. Klibanov, Anal. Biochem. 93, 1–25 (1979).Google Scholar
  134. 134.
    H. H. Weetall, Biochim. Biophys. Acta 212, 1–7 (1970).Google Scholar
  135. 135.
    W. H. Pitcher, Jr., in: Advanced Biochemical Engineering (T. K. Ghose, A. Fiechter, and N. Blakebrough, eds.), Vol. 10, pp. 1–26, Springer-Verlag, New York (1978).Google Scholar
  136. 136.
    D. L. Regan, P. Dunnill, and M. D. Lilly, Biotechnol. Bioeng. 16, 333–343 (1974).Google Scholar
  137. 137.
    P. W. Carr and L. D. Bowers, Immobilized Enzymes in Analytical and Clinical Chemistry, pp. 249–251, Wiley, New York (1980).Google Scholar
  138. 138.
    D. Gabel, I. Z. Steinberg, and E. Katchalski, Biochemistry 10, 4661–4669 (1971).Google Scholar
  139. 139.
    I. Chibata, Immobilized Enzymes, pp. 168–178, Wiley, New York (1978).Google Scholar
  140. 140.
    K. A. Hughes, Wall Street Journal (Three Star), East Ed., November 9, 1982, p. 31.Google Scholar
  141. 141.
    P. Brodelius, in: Industrial Applications of Immobilized Biocatalysts in Advanced Biochemical Engineering (T. K. Ghose, A. Fiechter, and N. Blakebrough, ed.), Vol. 10, pp. 75–109, Springer-Verlag, New York (1978).Google Scholar
  142. 142.
    P. W. Carr and L. D. Bowers, Immobilized Enzymes in Analytical and Clinical Chemistry, pp. 197–299, Wiley, New York (1980).Google Scholar
  143. 143.
    B. Danielsson, I. Lundstrom, K. Mosbach, and L. Stiblert, Anal. Lett. 12, 1189–1199 (1979).Google Scholar
  144. 144.
    K. Mosbach, U.S. Patent No. 4,021,307 (1977).Google Scholar
  145. 145.
    L. D. Bowers and P. W. Carr, Thermochim. Acta 10, 129–142 (1974).Google Scholar
  146. 146.
    J. C. Weaver, C. L. Cooney, S. P. Fulton, P. Schuler, and S. R. Tannenbaum, Biochim. Biophys. Acta 452, 258–291 (1976).Google Scholar
  147. 147.
    L. C. Clark, Jr., U.S. Patent No. 3,539,455 (1970).Google Scholar
  148. 148.
    S. J. Updike and G. P. Hicks, Nature (London) 214, 986–988 (1967).Google Scholar
  149. 149.
    B. Mattiasson and B. Danielsson, Carbohydr. Res. 102, 273–282 (1982).Google Scholar
  150. 150.
    B. Danielsson, K. Gaold, B. Mattiasson, and K. Mosbach, Anal. Lett. 9,987–1001 (1976).Google Scholar
  151. 151.
    W. J. Blaedel and R. A. Jenkins, Anal. Chem. 48, 1240–1247 (1976).Google Scholar
  152. 152.
    G. G. Guilbault and E. Hrabankova, Anal. Chem. 42, 1779–1783 (1970).Google Scholar
  153. 153.
    M. Nanjo and G. G. Guilbault, Anal. Chim. Acta 75, 167–180 (1975).Google Scholar
  154. 154.
    G. J. Papariello, A. K. Mukherji, and C. M. Shearer, Anal. Chem. 45, 790–792 (1973).Google Scholar
  155. 155.
    G. P. Hicks and J. J. Updike, Anal. Chem. 38, 726–730 (1966).Google Scholar
  156. 156.
    M. H. Keyes and R. C. Barabino, in: Enzyme Engineering (E. K. Pye and H. H. Weetall, eds.), Vol. 3, pp. 51–56, Plenum Press, New York (1976).Google Scholar
  157. 157.
    B. Watson and M. H. Keyes, Anal. Lett. 9, 713–725 (1976).Google Scholar
  158. 158.
    B. Watson, D. N. Stifel, and F. E. Semersky, Anal. Chim. Acta 106, 233–242 (1979).Google Scholar
  159. 159.
    B. Volesky and C. Emond, Biotechnol. Bioeng. 21, 1251–1276 (1979).Google Scholar
  160. 160.
    P. R. Johnson and L. D. Bowers, Anal. Chem. 54, 2247–2250 (1982).Google Scholar
  161. 161.
    D. J. Inman and W. E. Hornby, Biochem. J. 137, 25–32 (1974).Google Scholar
  162. 162.
    D. R. Senn, P. W. Carr, and L. N. Klatt, Anal. Chem. 48, 954–963 (1976).Google Scholar
  163. 163.
    G. Johansson, K. Edstrom, and L. Ogren, Anal. Chim. Acta 85, 55–60 (1976).Google Scholar
  164. 164.
    R. C. Barabino, D. N. Gray, and M. H. Keyes, Clin. Chem. (Winston-Salem, N.C.), 24, 1393–1398 (1978).Google Scholar
  165. 165.
    L. Ogren and G. Johansson, Anal. Chim. Acta 96, 1–11 (1978).Google Scholar
  166. 166.
    D. N. Gray, M. H. Keyes, and B. Watson, Anal. Chem. 49, 1067A–1072A (1977).Google Scholar
  167. 167.
    D. N. Gray, and M. H. Keyes, CHEMTECH 7, 642–648 (1977).Google Scholar
  168. 168.
    I. Chan, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 491–503, Academic Press, New York (1976).Google Scholar
  169. 169.
    G. F. Bickerstaff, Int. J. Biochem. 11, 201–206 (1980).Google Scholar
  170. 170.
    S. McCraken and E. Meighen, Can. J. Biochem. 57, 834–842 (1979).Google Scholar
  171. 171.
    J. S. Holcenberg, Ann. Rev. Biochem. 57, 795–812 (1982).Google Scholar
  172. 172.
    G. Gregoriadis, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 698–709, Academic Press, New York (1976).Google Scholar
  173. 173.
    G. Gregoriadis, N. Engl. J. Med. 295, 765–770 (1976).Google Scholar
  174. 174.
    G. Gregoriadis and E. D. Neerunjun, Eur. J. Biochem. 7, 179–185 (1974).Google Scholar
  175. 175.
    R. L. Juliano and D. Stamp, Biochem. Biophys. Res. Commun. 63, 651–658 (1975).Google Scholar
  176. 176.
    P. Gosh, P. K. Das, and B. K. Bachhawat, Arch. Biochem. Biophys. 213, 266–270 (1982).Google Scholar
  177. 177.
    L. D. S. Hudson, M. B. Fiddler, and R. J. Desnick, J. Pharmacol. Exp. Ther. 208, 507–514 (1979).Google Scholar
  178. 178.
    G. A. Grabowski and R. J. Desnick, in: Enzymes as Drugs (J. C. Holcenberg and J. Roberts, eds.), pp. 167–208, Wiley-Interscience, New York (1981).Google Scholar
  179. 179.
    I. V. Berezin and S. D. Varfolomeev, Appl. Biochem. Bioeng. 2, 259–290 (1979).Google Scholar
  180. 180.
    E. C. Hatchikian and P. Monsan, Biochim. Biophys. Res. Commun. 92,1091–1096 (1980).Google Scholar
  181. 181.
    D. A. Lappi, F. E. Stolzenbach, N. O. Kaplan, and M. D. Kamen, Biochem. Biophys. Res. Commun. 69, 878–884 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Melvin H. Keyes
    • 1
  • Seshaiyer Saraswathi
    • 1
  1. 1.Owens-Illinois, Inc.ToledoUSA

Personalised recommendations