Application of Radiation Grafting in Reagent Insolubilization

  • Chye H. Ang
  • John L. Garnett
  • Ronald G. Levot
  • Mervyn A. Long


Radiation grafting is shown to be a method with considerable research and industrial potential for the insolubilization of a wide range of organic reagents on polymer surfaces. The principle of the method is outlined in detail and involves radiation-induced copolymerization of a monomer containing an appropriate functional group to a polymer, then attachment of the reagent by subsequent chemical reactions. The relative merits of the two relevant grafting methods for this purpose, namely pre-irradiation and the mutual technique, are evaluated. Typical experimental procedures for each method are discussed. The mutual technique is shown to be more satisfactory for insolubilization reactions because of the lower radiation doses needed to achieve a particular percentage graft, resulting in less radiation damage to the backbone polymer. Variables influencing the efficiency of the mutual grafting method are reviewed, including solvent, dose rate, and dose. Additives for optimizing the grafting yield and properties are considered, including mineral acid and polyfunctional monomers. Methods for reducing competing homopolymerization are summarized. Three examples of the application of the mutual radiation grafting technique for insolubilization reactions are discussed in detail. These include immobilization of enzymes, heterogenization of catalytically active homogeneous metal complexes, and the anchoring of analytical reagents to form ion exchange resins.


Backbone Polymer Ethyl Acrylate Radiation Dose Rate Ethyl Acrylate Simultaneous Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Marshall and R. B. Merrifield, in: Biochemical Aspects of Reactions on Solid Supports (G. R. Stark, ed.), pp. 111–169, Academic Press, New York (1971).Google Scholar
  2. 2.
    K. G. Allum, R. D. Hancock, I. V. Howell, R. C. Pitkethly, and P. J. Robinson, Supported transition metal complexes. IV. Rhodium catalysts for the liquid phase hydroformylation of hexene-1,J. Catal. 43, 322–330 (1976).CrossRefGoogle Scholar
  3. 3.
    K. G. Allum, R. D. Hancock, I. V. Howell, R. C. Pitkethly, and P. J. Robinson, Supported transition metal complexes. V. Liquid phase catalytic hydrogenation of hexene-1,J. Catal 43, 331–338 (1976).CrossRefGoogle Scholar
  4. 4.
    Y. Kawabata, M. Tanaka, and I. Ogata, Asymmetric hydrogenation by a rhodium catalyst complexed with a phosphinite derived from cellulose, Chem. Lett.1976, 1213–1214.Google Scholar
  5. 5.
    T. J. Pinnavaia and P. K. Welty, Catalytic hydrogenation of 1-hexene by rhodium complexes in the intracrystal space of a swelling layer lattice silicate, J. Am. Chem. Soc. 97, 3819–3820 (1976).CrossRefGoogle Scholar
  6. 6.
    M. Capka and V. Kavan, Catalytic activity of rhodium (I) complexes containing poly(siloxy)alkyl diphenyl phosphines, Collect. Czech. Chem. Commun. 45, 2100–2107 (1980).Google Scholar
  7. 7.
    J. L. Garnett, R. S. Kenyon, and M. J. Liddy, Enzyme immobilization by covalent attachment to novel polymer matrices prepared by a radiation grafting technique,J. Chem. Soc. Chem. Commun.1974, 735–736.Google Scholar
  8. 8.
    I. Kaetsu, M. Kumakura, M. Yoshida, M. Asano, M. Himei, M. Tamura, K. Hayashi, Immobilization of enzymes by radiation, Rad. Phys. Chem. 14, 595–602 (1979).CrossRefGoogle Scholar
  9. 9.
    A. Charlesby, Atomic Radiation and Polymers, Pergamon Press, Oxford (1960).Google Scholar
  10. 10.
    A. Chapiro, Radiation Chemistry of Polymeric Systems, Interscience, New York and London (1962).Google Scholar
  11. 11.
    J. L. Garnett, Grafting, Rad. Phys. Chem. 14, 79–99 (1979).CrossRefGoogle Scholar
  12. 12.
    J. L. Garnett and N. T. Yen, Acid effects in the radiation grafting of monomers to polymers, particularly polyethylene, ACS Symp. Ser. 121, 243–261 (1980).CrossRefGoogle Scholar
  13. 13.
    S. Dilli and J. L. Garnett, Radiation-induced reactions with cellulose. IX. Copolymeriza-tion with styrene using a pre-irradiation procedure and the effect of additives on the grafting reaction, Aust. J. Chem. 24, 981–987 (1971).CrossRefGoogle Scholar
  14. 14.
    G. M. Kline, Analytical Chemistry of Polymers Part1, 3rd Edition, Interscience, New York (1966).Google Scholar
  15. 15.
    A. Ekstrom and J. L. Garnett, Radiolysis of binary mixtures. Part IV. The effect of polycyclic aromatic additives in methanol, J. Chem. Soc. A1968, 2416–2418.Google Scholar
  16. 16.
    A. Chapiro, A. M. Jendrychowska-Bonamour, and G. Lelievre, Molecular products in the radiolysis of vinyl monomers, Faraday Discuss Chem. Soc. 63, 134–140 (1977).CrossRefGoogle Scholar
  17. 17.
    S. Dilli and J. L. Garnett, Radiation-induced reactions with cellulose. III. Kinetics of styrene copolymerization in methanol, J. Appl. Polym. Sci. 11, 859–870 (1967).CrossRefGoogle Scholar
  18. 18.
    J. L. Garnett, Grafting to cellulose using UV and gamma radiation as initiators, ACS Symp. Ser. 48, 334–360 (1977).CrossRefGoogle Scholar
  19. 19.
    R. B. Phillips, J. Quere, G. Guiroy, and V. T. Stannett, Modification of pulp and paper by graft copolymerization, Tappi 55, 858–867 (1972).Google Scholar
  20. 20.
    R. J. Demint, J. C. Arthur Jr., A. R. Markezich, and W. F. McSherry, Radiation-induced interactions of styrene with cotton, Text. Res. J. 32, 918 (1962).CrossRefGoogle Scholar
  21. 21.
    A. Hebeish and J. T. Guthrie, The Chemistry and Technology of Cellulosic Copolymers, Springer-Verlag, Berlin and Heidelberg (1981).Google Scholar
  22. 22.
    G. Odian, T. Acker, and M. Sobel, Accelerated effects in radiation induced graft polymerization, J. Appl. Polym. Sci. 7, 245–250 (1963).CrossRefGoogle Scholar
  23. 23.
    S. Machi, I. Kamel, and J. Silverman, Effect of swelling on radiation-induced grafting of styrene to polyethylene,J. Polym. Sci. A-1 8, 3329–3337 (1970).CrossRefGoogle Scholar
  24. 24.
    C. H. Ang, J. L. Garnett, and R. Levot, Use of polyfunctional monomers as additives in accelerating the radiation grafting of styrene to polyolefins, Proceedings of the American Chemical Society, 183rd National Meeting, Las Vegas, Nevada (March 1982).Google Scholar
  25. 25.
    S. Dilli and J. L. Garnett, A charge-transfer theory for the interpretation and radiation-induced grafting of monomers to cellulose, J. Polym. Sci. A-1 4,2323–2324 (1966).CrossRefGoogle Scholar
  26. 26.
    A. Ekstrom and J. L. Garnett, Radiolysis of binary mixtures. I. Liquid phase studies with benzene-methanol,J. Phys. Chem. 70, 324–330 (1966).CrossRefGoogle Scholar
  27. 27.
    D. F. Sangster and A. Davison, Pulse radiolysis of styrene and acrylate monomers, J. Polym. Sci. Symp. Polym. 49, 191–210 (1975).CrossRefGoogle Scholar
  28. 28.
    J. L. Garnett and J. D. Leeder, Recent developments in grafting of monomers to wool keratin using U.V. and γ-radiation, ACS Symp. Ser. 49, 197–220 (1977).CrossRefGoogle Scholar
  29. 29.
    H. Barker, J. L. Garnett, R. Levot, and M. A. Long, Use of additives to enhance radiation grafting of monomers to poly(vinyl chloride) and application of these PVC copolymers to immobilization of enzymes and heterogenization of homogeneous metal complexes, J. Macromol Sci., Chem. A12(2), 261–273 (1978).CrossRefGoogle Scholar
  30. 30.
    J. H. Baxendale and F. W. Mellows, The gamma radiolysis of methanol and methanol solution, J. Am. Chem. Soc. 83, 4720–4726 (1961).CrossRefGoogle Scholar
  31. 31.
    W. J. Chappas and J. Silverman, The effect of acid on the radiation-induced grafting of styrene to polyethylene, Rad. Phys. Chem. 14, 847–852 (1979).CrossRefGoogle Scholar
  32. 32.
    J. L. Garnett, S. V. Jankiewicz, and D. F. Sangster, Effect of mineral acid on polymer produced during radiation-induced grafting of styrene monomer, J. Polym. Sci., Polym. Lett. Ed. 20, 171–175 (1982).CrossRefGoogle Scholar
  33. 33.
    G..Fletcher and J. L. Garnett (unpublished work).Google Scholar
  34. 34.
    C. H. Ang, J. L. Garnett, R. Levot, and M. A. Long, Polyfunctional monomers as additives for enhancing the radiation copolymerization of styrene to polyethylene, polypropylene and PVC, J. Appl. Polym. Sci. 27, 4893–4897 (1982).CrossRefGoogle Scholar
  35. 35.
    C. H. Ang, J. L. Garnett, R. Levot, and M. A. Long, Accelerated radiation-induced grafting of styrene to polyolefins in the presence of acid and polyfunctional monomers, J. Polym. Sci., Polym. Lett. Ed. 21, 257–261 (1983).CrossRefGoogle Scholar
  36. 36.
    C. H. Ang, J. L. Garnett, R. Levot, and M. A. Long, Novel additives for accelerating radiation grafting of monomers to polymers in acid media, Proceedings of the Fourth International Meetings on Radiation Proceeding, Yugoslavia, 1982 (in press).Google Scholar
  37. 37.
    M. B. Huglin and B. L. Johnson, Role of cations in radiation grafting and homopolymerization, J. Polym. Sci. A-1, 7, 1379–1384 (1969).CrossRefGoogle Scholar
  38. 38.
    J. L. Garnett and R. S. Kenyon, Acid effects in the styrene comonomer technique for radiation grafting to wool, J. Polym. Sco., Polym. Lett. Ed. 15, 421–425 (1977).CrossRefGoogle Scholar
  39. 39.
    M. J. Liddy, J. L. Garnett, and R. S. Kenyon, The insolubilization of trypsin by attachment to radiation graft copolymers of polypropylene, J. Polym. Sci., Symp. Polym. 49, 109–116 (1975).CrossRefGoogle Scholar
  40. 40.
    R. H. Grubbs and E. M. Sweet, Polymer attached catalysts. A comparison between polystyrene attached and homogeneous Rh(I) hydrogenation catalysts, J. Mol. Catal. 3, 259–270 (1977/8).Google Scholar
  41. 41.
    R. V. Davies, J. Kennedy, E. S. Lane, and J. L. Williams, Synthesis of metal complexing polymers, IV. Polymers containing miscellaneous functional groups, J. Appl. Chem. 9, 368–371 (1959).CrossRefGoogle Scholar
  42. 42.
    J. R. Parrish and R. Stevenson, Chelating resins from 8-hydroxyquinoline, Anal. Chim. Acta 70, 189–198 (1974).CrossRefGoogle Scholar
  43. 43.
    F. Vernon and H. Eccles, Chelating ion-exchangers containing 8-hydroxyquinoline as the functional group, Anal. Chim. Acta 63, 403–414 (1973).CrossRefGoogle Scholar
  44. 44.
    F. Vernon and H. Eccles, Chelating ion-exchangers containing salicyclic acid, Anal. Chim. Acta 72, 331–338(1974).CrossRefGoogle Scholar
  45. 45.
    C. H. Ang and J. L. Garnett (unpublished work).Google Scholar
  46. 46.
    N. P. Davis, J. L. Garnett, and R. G. Urquhart, Comparison of photosensitized and γ-ray-induced graft copolymerization of monomers to cellulose, J. Polym. Sci., Symp. Polym. 55, 287–301 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Chye H. Ang
    • 1
  • John L. Garnett
    • 1
  • Ronald G. Levot
    • 1
  • Mervyn A. Long
    • 1
  1. 1.School of ChemistryThe University of New South WalesKensingtonAustralia

Personalised recommendations