Advertisement

Hypotaurine Aminotransferase

  • J. H. Fellman
  • E. S. Roth
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 139)

Abstract

Taurine is a substance widely distributed in the animal world (1). Certain mammalian tissues contain remarkably high concentrations of this sulfur amino acid suggesting an important biological role and yet the detailed account of its metabolic origin remains incomplete. An understanding of the metabolic turnover of taurine necessarily would extend insight into the control mechanisms for regulation of biosynthesis and transport.

Keywords

Pentanoic Acid Aminotransferase Activity Sulfur Amino Acid Sulfite Oxidase Tanoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jacobsen, J.G., and Smith, L.H., 1968, Biochemistry and physiology of taurine and taurine derivatives, Physiol. Res, 48: 424–511.Google Scholar
  2. 2.
    Sturman, J.A., and Fellman, J.H., Taurine metabolism in the rat: effect of partial hepatectomy, manuscript in preparation.Google Scholar
  3. 3.
    Fellman, J.H., Roth, E.S., Avedovech, N.A., and McCarthy, K.D., 1980, Mammalian hypotaurine aminotransferase: isethionate is not a product, Life Sci, 27: 1999–2004.PubMedCrossRefGoogle Scholar
  4. 4.
    Fellman, J.H., Roth, E.S., and Fujita, T.S., 1978, Taurine is not metabolized to isethionate in mammalian tissue, in: “Taurine and Neurological Disorders,” A. Barbeau and R. Huxtable, eds., Raven Press, New York.Google Scholar
  5. 5.
    Fellman, J.H., The synthesis of 23H-taurine and 2-3H-hypotaurine, J. Lab. Comp. Radio. Pharm., in press.Google Scholar
  6. 6.
    Silverman, R.B., and Levy, M.A., 1980, Irreversible inactivation of pig brain y aminobutyric acid a-ketoglutarate transaminase by 4-amino-5-halopentanoic acid, Biochem. Biophys. Res. Commun, 95: 250–254.PubMedCrossRefGoogle Scholar
  7. 7.
    Pichat, L., Herbert, M., and Thiers, M., 1961, Etudes sur les methodes de preparation de la selenocystamine, selenohypotaurine et selonotaurine, Tetrahedron, 12: 1–6.CrossRefGoogle Scholar
  8. 8.
    Rinaldi, A., Fadda, M.B., Dernini, S., Cossu, P., and DeMarco, C., 1975, Copper catalysed alkaline autoxidation of selenocystamine, It. J. Biochem, 1: 219–230.Google Scholar
  9. 9.
    Fellman, J.H., Roth, E.S., Avedovech, N.A., and McCarthy, K.D., 1980, The metabolism of taurine to isethionate, Arch. Biochem. Biophys, 204: 560–565.PubMedCrossRefGoogle Scholar
  10. 10.
    Rowan, G.L., 1974, Isolation of lysosomes, Methods in Molecular Biology, 5: 89–101.Google Scholar
  11. 11.
    Schousboe, A., Wu, J.-Y., and Roberts, E., 1973, Purification and characterization of the 4-aminobutyrate-2-ketoglutarate transaminase from mouse brain, Biochemistry, 121’2868–2873.Google Scholar
  12. 12.
    Block-Tardy, M., Rolland, B., and Gonnard, P., 1974, Pig brain 4-aminobutyrate-2-ketoglutarate transaminase. Purification, kinetics and physical properties, Biochimie, 56: 823–832.CrossRefGoogle Scholar
  13. 13.
    Tanaka, H., Toyama, S., Tsukahara, H., and Soda, K., 1974, Transamination of hypotaurine by taurine: a-ketoglutarate aminotransferase, FEBS Letters, 45: 111–113.PubMedCrossRefGoogle Scholar
  14. 14.
    Yonaha, K., and Toyama, S., 1980, y-aminobutyrate: a-ketoglutarate aminotransferase from Pseudomonas species F-126: purification, crystallization, and enzymologic properties, Arch. Biochem. Biophys, 200: 156–164.Google Scholar
  15. 15.
    Rinaldi, A., Floris, P., Cossu, P., and DeMarco, C., 1978, Transamination of selenohypotaurine, Bull. Mol. Biol. Med, 3: 234–242.Google Scholar
  16. 16.
    Kochakian, C.D., 1975, Free amino acids of sex organs of the mouse: regulation by androgen, Am. J. Physiol . 228: 1232–1235.Google Scholar
  17. 17.
    Abeles, R.H., and Maycock, A.L., 1976, Suicide enzyme inactiva-tors, Acc. Chem. Res, 9: 313–319.CrossRefGoogle Scholar
  18. 18.
    Jung, M.J., Lippert, B., Metcalf, B.W., Schechter, P.J., Bohlen, P., and Sjoerdsma, A., 1977, The effect of 4-amino hex-5-ynoic acid (y-acetylenic GABA, y-ethynyl GABA) a catalytic inhibitor of GABA transaminase, on brain GABA metabolism in vivo, J. Neurochem, 28: 717–723.CrossRefGoogle Scholar
  19. 19.
    Jung, M.J., Lippert, B., Metcalf, B.W., Bohlen, P., and Chechter, P. J., 1977, y-vinyl GABA (4-amino-hex-5-enoic acid) a new selective irreversible inhibitor of GABA-T: effects on brain GABA metabolism, J. Neurochem, 29: 797–802.Google Scholar
  20. 20.
    Perry, T.L., Kish, S.J., and Hansen, S., 1979, y-vinyl GABA: effects of chronic administration on the metabolism of GABA and other amino compounds in rat brain., J. Neurochem, 32: 1641–1645.Google Scholar
  21. 21.
    Wu, J.-Y., Moss, L.G., and Chude, 0., 1978, Distribution and tissue specificity of 4-aminobutyrate-2-oxoglutarate aminotransferase, Neurochem. Res, 3: 207–219.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • J. H. Fellman
    • 1
  • E. S. Roth
    • 1
  1. 1.School of Medicine Department of BiochemistryUniversity of Oregon Health Sciences CenterPortlandUSA

Personalised recommendations