Taurine and Friedreich’s Ataxia: An Update

  • A. Barbeau
  • S. Melancon
  • R. J. Huxtable
  • B. Lemieux
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 139)


Friedreich’s ataxia is a recessively inherited spino-cerebellar ataxia appearing in childhood and relentlessly progressing to invalidity or death in middle age at the latest. A number of signs and symptoms have been found to be present in 100% of patients and are obligatory for a diagnosis, while other signs are definitely of a progressive nature (19). Incoordination of limbs (ataxia) is linked to evidence of damage to the posterior columns of the spinal cord and of dorsal root ganglia (loss of vibration and position sense), and of the pyramidal tract (absence of knee and ankle jerks, trophic changes). Most of these symptoms first appear in the lower limbs. Also observed are skeletal deformities (pes cavus, kyphoscoliosis). Electrically, almost all cases of the typical disease have absent or considerably diminished sensory action potentials in the sural nerves, while motor conduction velocities are either normal or only slightly decreased. Retinitis pigmentosa is not usually seen in typical Friedreich’s ataxia, but it is often present in association with a variety of other forms of hereditary ataxia. A final feature of Friedreich’s ataxia that must be stressed is the constant presence of a cardiomyopathy as evidenced by abnormal echocardiograms, vectocardiograms or electrocardiograms, singly or in combination. This cardiomyopathy is usually hypertrophic in type and occasionally obstructive; it appears to be an integral part of Friedreich’s ataxia, and not a phenomenon secondary to the disease process. The most important histological changes are myocardial fibrosis and foci of degeneration of the cardiac muscle cells. Granular deposits of calcium or iron salts can occasionally be found in these muscle cells.


Retinitis Pigmentosa Cerebellar Ataxia Retinal Degeneration Taurine Transport Motor Conduction Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azari, J., Brumbaugh, P., Barbeau, A., and Huxtable, R., 1980, Taurine decreases lesion severity in the heart of cardiomyopathic hamsters, Can. J. Neurol. Sci., 7: 435–440.Google Scholar
  2. 2.
    Barbeau, A., Inoue, N., Tsukada, Y., and Butterworth, R.F., 1975, Minireview: the neuropharmacology of taurine, Life Science, 17: 669–678.CrossRefGoogle Scholar
  3. 3.
    Barbeau, A., Tsukada, Y., and Inoue, N., Neuropharmacologic and behavioral effects of taurine, in: “Taurine,” R. Huxtable and A. Barbeau, eds., Raven Press, New York (1976), pp. 253–266.Google Scholar
  4. 4.
    Barbeau, A., 1976, Friedreich’s ataxia 1976 - An Overview, Can. J. Neurol. Sci., 3: 389–397.Google Scholar
  5. 5.
    Barbeau, A., 1978, Friedreich’s ataxia 1978 — An Overview, Can J. Neurol. Sci., 5: 161–165.Google Scholar
  6. 6.
    Barbeau, A., Taurine and Friedreich’s ataxia, in: “Taurine and Neurological Disorders,” A. Barbeau and R.J. Huxtable, eds., Raven Press, New York (1978), pp. 429–440.Google Scholar
  7. 7.
    Barbeau, A., 1979, Friedreich’s ataxia 1979 - An Overview, Can J. Neurol. Sci., 6: 311–319.Google Scholar
  8. 8.
    Barbeau, A., 1980, Friedreich’s ataxia 1980 - An Overview of the physiopathology, Can J. Neurol. Sci., 7: 455–468.Google Scholar
  9. 9.
    Bland, W.H., Bloom, A., and Drell, W., 1955, Qualitative study of amino aciduria in muscular dystrophy and myotonia dystrophica, Proc. Soc. Exp. Biol. Med., 90: 704–706.Google Scholar
  10. 10.
    Brotherton, J., 1969, Studies on the metabolism of the rat retina with special reference to retinitis pigmentosa. 2-amino acid content as shown by chromatography, Exp. Eye Res., 3: 837–843.Google Scholar
  11. 11.
    Butterworth, R.F., Hamel, E., Landreville, F., and Barbeau, A., 1979, Amino acid changes in thiamine-deficient encephalopathy: some implications for the pathogenesis of Friedreich’s ataxia, Can. J. Neurol. Sci., 6: 217–222.Google Scholar
  12. 12.
    Butterworth, R.F., Hamel, E., Landreville, F., and Barbeau, A., 1978, Cerebellar ataxia produced by 3-acetyl pyridine in rat. Can. J. Neurol. Sci., 5: 131–133.PubMedGoogle Scholar
  13. 13.
    Chesney, R.W., Jax, D.K., Scriver, C.R., and Mohyuddin, F., Taurine transport in mammalian kidney, in: “Taurine and Neurological Disorders,” A. Barbeau and R.J. Huxtable, eds., Raven Press, New York (1978), pp. 73–93.Google Scholar
  14. 14.
    Darsee, J.R., and Heymsfield, S.B. 1981, Decreased myocardial taurine levels and hypertaurinuria in a kindred with mitral-valve prolapse and congestive cardiomyopathy, New Eng. J. Med., 304: 129–135.Google Scholar
  15. 15.
    De Michele, G., Jolicoeur, F.B., Rondeau, D.B., Butterworth, R.F., and Barbeau, A., 1980, Effects of glutamate and aspartate on ataxic gait induced by 3-acetyl pryidine in rats, Can J. Neurol. Sci., 7: 451–454.Google Scholar
  16. 16.
    Dolora, P., Agresti, A., Giotti, A., and Pasquini, G., 1973, Effect of taurine on calcium kinetics of Guinea pig heart, Eur. J. Pharmacol., 24: 352–358.CrossRefGoogle Scholar
  17. 17.
    Filla, A., Butterworth, R.F., Geoffroy, G., Lemieux, B., and Barbeau, A., 1978, Platelet taurine uptake in spinocerebellar degeneration, Can. J. Neurol. Sci., 5: 119–123.PubMedGoogle Scholar
  18. 18.
    Filla, A., Butterworth, R.F., and Barbeau, A., 1979, Pilot studies on membranes and some transport mechanisms in Friedreich’s ataxia, Can. J. Neurol. Sci., 6: 285–289.PubMedGoogle Scholar
  19. 19.
    Geoffroy, G., Barbeau, A., Breton, G., Lemieux, B., Aube, M., Leger, C., and Bouchard, M.P., 1976, Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia, Can. J. Neurol. Sci., 3: 279–286.Google Scholar
  20. 20.
    Goodman, H.O., Connally, B.M., McLean, W., and Resnick, M., 1980, Taurine transport in epilepsy, Clin. Chem., 26: 414–419.PubMedGoogle Scholar
  21. 21.
    Hall, C.D., Stowe, F.R., and Summer, G.K., 1974, Familial cerebellar dyssynergia and myoclonus epilepsy associated with a defect of amino acid metabolism, Neurology, 24: 375.Google Scholar
  22. 22.
    Hayes, K.C., Carey, R.E., and Schmidt, S.Y., 1975, Retinal degeneration associated with taurine deficiency in the cat, Science, 188: 949–951.PubMedCrossRefGoogle Scholar
  23. 23.
    Hayes, K.C., Rabin, A.R., and Berson, E.L., 1975, An ultrastructural study of nutritionally - induced and reversed retinal degeneration in cats, Am. J. Pathol. 78: 505–524.PubMedGoogle Scholar
  24. 24.
    Huxtable, R.J., and Bressler, R., 1974, Taurine concentration in congestive heart failure, Science, 198: 409–411.CrossRefGoogle Scholar
  25. 25.
    Huxtable, R.J., 1978, Cardiac pharmacology and cardiomyopathy in Friedreich’s ataxia, Can. J. Neurol. Sci., 5: 83–92.Google Scholar
  26. 26.
    Huxtable, R.J., Azari, J., Reisine, T., Johnson, P., Yamamura, H., and Barbeau, A., 1979, Regional distribution of amino acids in Friedreich’s ataxia brains, Can. J. Neurol. Sci., 6: 255–258.Google Scholar
  27. 27.
    Izumi, K., Butterworth, R.F., and Barbeau, A., 1977, Effect of taurine on calcium binding to microsomes isolated from rat cerebral cortex, Life Sciences, 20: 943–950.PubMedCrossRefGoogle Scholar
  28. 28.
    Izumi, K., Ngo, T.T., and Barbeau, A., Metabolic modulation in the central nervous system by taurine, in: “Taurine and Neurological Disorders,” A. Barbeau and R.J. Huxtable, eds., Raven Press, New York, (1978), pp. 137–149.Google Scholar
  29. 29.
    Jacobsen, J.G., and Smith, L.L.H., 1968, Biochemistry and physiology of taurine and taurine derivatives, Physiol. Rev., 48: 424–511.PubMedGoogle Scholar
  30. 30.
    Lemieux, B., Barbeau, A., Beroniade, V., Shapcott, D., Breton, G., Geoffroy, G., and Melancon, S., 1976, Amino Acid metabolism in Friedreich’s ataxia, Can. J. Neurol. Sci., 3: 373–378.PubMedGoogle Scholar
  31. 31.
    Lemieux, B., Giguere, R., Barbeau, A., Melancon, S., and Shapcott, D., 1978, Taurine in cerebrospinal fluid in Friedreich’s ataxia, Can. J. Neurol. Sci., 5: 125–129.Google Scholar
  32. 32.
    McBride, W.J. and Frederickson, R.C.A., Neurochemical and neurophysiological evidence for a role of taurine as an inhibitory neurotransmitter in the cerebellum of the rat, in: “Taurine and Neuological Disorders,” A. Barbeau and R.J. Huxtable, eds., Raven Press, New York (1978), pp. 415–427.Google Scholar
  33. 33.
    Melancon, S.B., Grignon, B., Ledru, E., Geoffroy, G., Potier, M., Dallaire, L., and Vanasse, M., 1980, The Beta-amino acid transport system in Friedreich’s ataxia, Can. J. Neurol. Sci., 7: 441–446.Google Scholar
  34. 34.
    Nevin, N.C., Hurwitz, L.J., and Neill, D.W., 1964, Camptodactyly with mental deficiency, J. Med. Genet.. 3: 265–268.CrossRefGoogle Scholar
  35. 35.
    Reccia, R., Pignalosa, B., Grasso, A., and Campanella, G., 1980, Taurine treatment in retinitis pigmentosa, Acta Neurologica (Napoli), 18: 132–136.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • A. Barbeau
    • 1
  • S. Melancon
    • 2
  • R. J. Huxtable
    • 3
  • B. Lemieux
    • 4
  1. 1.Department of NeurobiologyClinical Research Institute of MontrealMontrealCanada
  2. 2.Centre de Recherche Pédiatrique Hôpital Ste-Justine Département de Pédiatrie et NeurologieUniversité de MontréalCanada
  3. 3.Department of Pharmacology Health Sciences CenterUniversity of ArizonaTucsonUSA
  4. 4.Centre HospitalierUniversitoice de SherbrookeCanada

Personalised recommendations