Central Effects of Taurine: Antagonistic Effects on Central Actions of Angiotensin

  • T. Furukawa
  • K. Yamada
  • K. Kushiku
  • N. Ono
  • T. Tokunaga
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 139)


Renin released from the juxtaglomerular apparatus of the kidney into the circulation produces angiotensin (AT) and this compound increases tubular absorption of sodium and water, resulting in an increase in circulating blood volume. In addition, AT evokes a net increase in sympathetic vasoconstrictor activity. The presynaptic effect of AT facilitates adrenergic transmitter release (16) and may also involve increased transmitter synthesis (3) and inhibition of adrenergic uptake (21). The postsynaptic effect appears to be due to an increase in sensitivity to norepinephrine (24). Furthermore, large doses of AT exert a constrictive action in the smooth muscle of blood vessels. Thus, the role of the peripheral renin-AT system in regulating the blood pressure is significant.


Central Action Drinking Behavior Water Deprivation Guide Cannula Posterior Hypothalamus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, B., Leksell, L.G., and Rundgren, M., 1975, Duration of central action of angiotensin II estimated by its interaction with CSF Na+, Acta. Physiol. Scand., 93:472–476.CrossRefGoogle Scholar
  2. 2.
    Bertilsson, L., Suria, A., and Costa, E., 1976, y-aminobutyric acid in rat superior cervical ganglion, Nature, 260: 540–541.PubMedCrossRefGoogle Scholar
  3. 3.
    Boadle-Biber, M.C., Hughes, J., and Roth, R.H., 1970, Acceleration of noradrenaline biosynthesis in the guinea pig vas deferens by potassium, Br. J. Pharmacol., 40:702–720.Google Scholar
  4. 4.
    Bowery, N.G., and Brown, D.A., 1974, On the release of accumulated [3H]-y-aminobutyric acid (GABA) from isolated rat superior cervical ganglia, Br. J. Pharmacol., 52:436P–437P.PubMedGoogle Scholar
  5. 5.
    Bowery, N.G., Brown, D.A., Collins, G.G.S., Galvan, M., Marsh, S., and Yamini, G., 1976, Indirect effects of amino acids on sympathetic ganglion cells mediated through the release of y-aminobutyric acid from glial cells, Br. J. Pharmacol., 57:73–91.PubMedGoogle Scholar
  6. 6.
    Brown, D.A., and Galvan, M., 1977, Influence of neuroglial transport on the action of y-aminobutyric acid on mammalian ganglion cells, Br. J. Pharmacol., 59:373–378.PubMedGoogle Scholar
  7. 7.
    De Groot, J., 1959, The rat forebrain in stereotaxic coordinates, Trans. Roy. Neth. Acad. Sci., 52:1–40.Google Scholar
  8. 8.
    Elie, R., and Panisset, J.C., 1970, Effect of angiotensin and atropine on the spontaneous release of acetylcholine from cat cerebral cortex, Brain Res., 17: 297–305.PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrario, C.M., Dickinson, C.J.,.and McCubbin, J.W., 1970, Central vasomotor stimulation by angiotensin, Clin. Sci., 39: 239–245.Google Scholar
  10. 10.
    Feuerstein, G., Krausz, M., and Gutman, Y., 1978, Effect of indomethacin on water intake of the rat, Pharmacol. Biochem. Behay., 9:893–894.CrossRefGoogle Scholar
  11. 11.
    Fischer-Ferraro, C., Nahmod, V.E., Goldstein, D.J., and Finkielman, S., 1971, Angiotensin and renin in rat and dog brain, J. Exp. Med., 133:353–361.PubMedCrossRefGoogle Scholar
  12. 12.
    Fitzsimons, J.T., and Setier, Paulette, E., 1975, The relative importance of central nervous catecholaminergic and cholinergic mechanisms in drinking in response to angiotensin and other thirst stimuli, J. Physiol., 250: 613–631.PubMedGoogle Scholar
  13. 13.
    Fleisch, J.H., Flacke, W., and Gillis, R.A., 1969, Nicotinic and muscarinic receptors in the cardiac sympathetic ganglia of the dog, J. Pharmacol. Exp. Ther., 168:106–115.Google Scholar
  14. 14.
    Ganten, D., Marquez-Jullio, A., Granger, P., Hayduk, K., Karsunky, K.P., Boucher, R., and Genest, J., 1971, Renin in dog brain, Am. J. Physiol., 221:1733–1737.PubMedGoogle Scholar
  15. 15.
    Hoffman, W.E., Ganten, U., Phillips, M.I., Schmid, P.G., Schelling, P., and Ganten, D., 1978, Inhibition of drinking in water-deprived rats by combined central angiotensin II and cholinergic receptor blockade, Am. J. Physiol., 234:F41–F47.PubMedGoogle Scholar
  16. 16.
    Hughes, J., and Roth, R.H., 1971, Evidence that angiotensin enhances transmitter release during sympathetic nerve stimulation, Br. J. Pharmacol., 41:239–255.PubMedGoogle Scholar
  17. 16.
    Hughes, J., and Roth, R.H., 1971, Evidence that angiotensin enhances transmitter release during sympathetic nerve stimulation, Br. J. Pharmacol., 41:239–255.PubMedGoogle Scholar
  18. 17.
    Isaac, L., 1980, Clonidine in the central nervous system: site and mechanism of hypotensive action, J. Cardiovasc. Pharmacol., 2:Suppl. 1, S5–S20.CrossRefGoogle Scholar
  19. 18.
    Keil, L.C., Summy-Long, J., and Severs, W.B., 1975, Release of vasopressin by angiotensin II, Endocrinology, 96: 1063–1065.Google Scholar
  20. 19.
    Kuribara, H., Hayashi, T., Alam, M.R., Tadokoro, S., and Miura, T., 1978, Automatic measurement of drinking in rats: Effects of hypophysectomy, Pharmacol. Biochem. Behay., 9:697–702.CrossRefGoogle Scholar
  21. 20.
    Minchin, M.C.W., and Iversen, L.L., 1974, Release of [3H] gamma-aminobutyric acid from glial cells in rat dorsal root ganglia, J. Neurochem., 23:533–540.PubMedCrossRefGoogle Scholar
  22. 21.
    Peach, M.J., Bumpus, F.M., and Khairallah, P.A., 1969, Inhibition of norepinephrine uptake in hearts by angiotensin II and analogs, J. Pharmacol. Exp. Ther., 167:291–299.Google Scholar
  23. 22.
    Pellegrino, L.J., Pellegrino, A.S., and Cushmann, A.J., A stereotaxic atlas of the rat brain, Plenum Press, New York, (1979).Google Scholar
  24. 23.
    Poth, M.M., Heath, R.G., and Ward, M., 1975, Angiotensinconverting enzyme in human brain, J. Neurochem., 25:83–85.PubMedCrossRefGoogle Scholar
  25. 24.
    Povolny, K.M., Jung, R.W., Kraft, E., and Zimmerman, B.G., 1977, Adrenergic potentiation by angiotensin II in isolated canine cutaneous blood vessels: Effect of bathing media and calcium, Blood Vessels, 14: 105–115.Google Scholar
  26. 25.
    Simpson, J.B., and Routtenberg, A., 1973, Subfornical organ: site of drinking elicitation by angiotensin II, Science, 181: 1172–1174.Google Scholar
  27. 26.
    Waniewski, R.A., and Suria, A., 1977, Alterations in y-amino-butyric acid content in the rat superior cervical ganglion and pineal gland, Life Sci., 21: 1129–1142.PubMedCrossRefGoogle Scholar
  28. 27.
    Yang, H.Y.T., and Neff, N.H., 1972, Distribution and properties of angiotensin converting enzyme of rat brain, J. Neurochem., 19:2443–2445.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • T. Furukawa
    • 1
  • K. Yamada
    • 1
  • K. Kushiku
    • 1
  • N. Ono
    • 2
  • T. Tokunaga
    • 1
  1. 1.Department of PharmacologyFukuoka UniversityFukuoka 814Japan
  2. 2.School of Medicine and Pharmaceutical SciencesFukuoka UniversityFukuoka 814Japan

Personalised recommendations