Taurine Receptors in CNS Membranes: Binding Studies

  • A. M. López-Colomé
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 139)


Taurine is present in high concentration in a wide variety of animal tissues (26), especially in excitable and nervous tissue (34,40,45). Recently, great interest has developed in clarifying the function of taurine in the central nervous system. It has been demonstrated that taurine, which is present in the brain in high concentrations (40), has a hyperpolarizing effect on neurons from the spinal cord and cerebral cortex when iontophoretically applied (6–8). It also has been shown to depress reversibly the b wave of the electroretinogram (47,62). A high-affinity, sodium-dependent uptake system has been demonstrated for taurine accumulation into brain slices and into a specific synaptosomal subfraction (24,28,29,57). It has been reported that taurine is released from cerebral cortex in response to electrical stimulation (32) and from the retina upon the influence of light (48,55). Furthermore the release of taurine following depolarizing stimuli has also been demonstrated in rat brain and spinal cord slices as well as in mouse brain synaptosomes (3,4,27,32,36). These findings support the hypothesis that taurine might act as an inhibitory transmitter or a modulator in the central nervous system (9,39).


Olfactory Bulb Postsynaptic Receptor Gaba Binding Crude Synaptosomal Fraction Brain Synaptic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Austin, L., Recasens, M., Mathur, R.L., and Mandel, P., 1978, The distribution of taurine, cysteinyl sulphinilic acid decarboxylase and cysteinyl sulphinilic acid a-ketogluturate transaminase in the rat olfactory bulb and olfactory nucleus, Neurosci. Letters, 9:59–63.Google Scholar
  2. 2.
    Biziere, K., Thompson, H., and Coyle, J.T., 1980, Characterization of specific, high affinity binding sites for L- 3H–glutamic acid in rat brain membranes, Brain Res., 183: 421–433.PubMedCrossRefGoogle Scholar
  3. 3.
    Clark, R.M., and Collins, G.G.S., 1976, The release of endogenous amino acids from the rat visual cortex, J. Physiol., 262:383–400.PubMedGoogle Scholar
  4. 4.
    Collins, G.G.S., and Topiwala, S.H., 1974, The release of 14C - taurine from slices of rat cerebral cortex and spinal cord evoked by electrical stimulation and high potassium ion concentrations, Br. J. Pharmacol., 50:451–452.Google Scholar
  5. 5.
    Collins, G.G.S., 1974, The rate of synthesis, uptake and disappearance of 14C-taurine in eight areas of the rat central nervous system, Brain Res., 76: 447–459.PubMedCrossRefGoogle Scholar
  6. 6.
    Curtis, D.R., and Watkins, J.C., 1960, The excitation and depression of spinal neurons by structurally related amino acids, J. Neurochem., 6:117–141.Google Scholar
  7. 7.
    Curtis, D.R., Hosli, L., and Johnston, G.A.R., 1968, A pharmacological study of the depression of spinal neurons by glycine and related amono acids, Exp. Brain Res., 6:1–18.PubMedGoogle Scholar
  8. 8.
    Curtis, D.R. and Watkins, J.C., 1973, The pharmacology of amino acids related to y -aminobutyric acid, Pharmac. Rev., 17:347–391.Google Scholar
  9. 9.
    Davison, A.N., and Kaczmarek, L.K., 1971 ), Taurine a possible neurotransmitter Nature, 234: 107–108.Google Scholar
  10. 10.
    De Belleroche, J.S., and Bradford, H.F., 1973, Amino acids in synaptic vesicles from mammalian cerebral cortex: A reappraisal, J. Neurochem., 21:441–451.Google Scholar
  11. 11.
    De Feudis, F.V., and Black, W.C., 1973, A comparison of the binding of 14C–y-aminobutyric acid and 3H–acetylcholine to particulate fractions of 4 regions of rat brain in the presence of 40 mM NaCl, Brain Res., 49: 218–222.CrossRefGoogle Scholar
  12. 12.
    De Feudis, F.V., 1978, Can the binding of GABA, glycine and ß-alanine to synaptic receptors be determined in the presence of a physiological concentration of Na+?, Experentia, 34: 1314–1315.CrossRefGoogle Scholar
  13. 13.
    De Feudis, F.V., Maitre, M., Ossola, L., Elkouby, A., and Mandel, P., 1979, Bicuculline-sensitive GABA binding to synaptosome enriched fraction of rat cerebral cortex in the presence of a physiological concentration of sodium, Gen. Pharmac., 10: 193–194.CrossRefGoogle Scholar
  14. 14.
    DeRobertis, E., Pelegrino de Iraldi, A., Rodriguez de Lores Arnaiz, G., and Salganicoff, L., 1962, Cholinergic and non-cholinergic nerve endings in rat brain, I. Isolation and subcellular distribution of acetyl choline and acetyl-cholinesterase, J. Neurochem., 9: 23–35.Google Scholar
  15. 15.
    DeRobertis, E., and Fiszer de Plazas, S., 1976, Isolation of hydrophobic proteins binding amino acids. Selectivity of the binding of L- 14C–glutamate in cerebral cortex, J. Neurochem., 26: 1237–1243.CrossRefGoogle Scholar
  16. 16.
    Dolara, P., Ledda, F., Mugelli, A., Mantelli, L., Zilletti, F., Franconi, F., and Giotti, A., Effect of taurine on calcium, inotropism, and electrical activity of the heart. in: “Taurine and Neurological Disorders,” A. Barbeau, and R. Huxtable, eds., Raven Press, New York (1978).Google Scholar
  17. 17.
    Enna, S.J., and Snyder, S.H., 1975, Properties of y-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions, Brain Res., 100: 81–97.Google Scholar
  18. 18.
    Enna, S.J., and Snyder, S.H., 1976, Gamma-aminobutyric acid (GABA) receptor binding in mammalian retina, Brain Res., 115: 174–179.Google Scholar
  19. 19.
    Foster, A.C., and Roberts, P.J., 1978, High affinity L3H-glutamate binding to postsynaptic receptor sites on rat cerebellar membranes, J. Neurochem., 31:1467–1477.Google Scholar
  20. 20.
    Guidotti, A., Badiani, G., and Pepeu, G., 1972, Taurine distribution in cat brain, J. Neurochem., 19:431–435.Google Scholar
  21. 21.
    Haas, H.L., and Hosli, L., 1973, The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline, Brain Res., 52: 399–402.Google Scholar
  22. 22.
    Hajos, F., 1975, An improved method for the preparation of synaptosomal fractions in high purity, Brain Res., 93: 485.Google Scholar
  23. 23.
    Henn, A.F., Anderson, D.J., and Rustad, D.G., 1976, Glial contamination of synaptosomal fractions, Brain Res., 101: 341–344.Google Scholar
  24. 24.
    Hruska, R.E., Padjen, A., Bressler, R., and Yamamura, H.I., 1978, Taurine: Sodium-dependent, high-affinity transport into rat brain synaptosomes, Mol. Pharmacol., 14:77–85.Google Scholar
  25. 25.
    Izumi, K., Ngu, T.T., and Barbeau, A., Metabolic modulation in the central nervous system by taurine, in: “Taurine in Neurological Disorders,” A. Barbeau and R. Huxtable, eds., Raven Press, New York (1978), pp. 137–160.Google Scholar
  26. 26.
    Jacobsen, J.G., and Smith, L.H., 1968, Biochemistry and physiology of taurine and taurine derivatives, Physiol. Rev., 48:424–511.Google Scholar
  27. 27.
    Jasper, H.H., and Koyame, I., 1969, Rate of Release of amino acids from the cerebral cortex in the cats as affected by brainstem and thalamic stimulation, Can. J. Physiol. Pharmacol., 47:889–905.Google Scholar
  28. 28.
    Kaczmarek, L.K., and Davison, A.N., 1972, Uptake and release of taurine from rat brain slices, J. Neurochem., 19:2355–2362.Google Scholar
  29. 29.
    Kontro, P., and Oja, S.S., 1978, Sodium dependence of taurine in rat brain synaptosomes, Neuroscience, 3: 761–765.Google Scholar
  30. 30.
    Kumpulainen, E., Jokisalo, V.J., and Landesmaki, P., 1978, Physiocochemical characterization of taurine binding with synaptic membranes in the chicken brain, Intern. J. Neuroscience, 8:123–128.Google Scholar
  31. 31.
    Kuriyama, K., and Nakagawa, K., Role of taurine in adrenal gland: A preventive effect of stress induced release catecholamines from chromaffin granules, in: “Taurine,” R. Huxtable and A. Barbeau, eds., Raven Press, New York (1976), pp. 335–345.Google Scholar
  32. 32.
    Landesmaki, P., Pasula, M., and Oja, S.S., 1975, Effect of electrical stimulation and chlorpromazine on the uptake and release of taurine, y-aminobutyric acid and glutamic acid in mouse brain synaptosomes, J. Neurochem., 25:675–680.Google Scholar
  33. 33.
    Landesmaki, P., Kumpulainen, E., Raasakka, 0., and Kyrki, P., 1977, Interaction of taurine GAGA and glutamic acid with synaptic membranes, J. Neurochem., 29:819–826.Google Scholar
  34. 34.
    Lombardini, J.B., Regional and Subcellular studies on taurine in the rat central nervous system, in: “Taurine,” R. Huxtable and A. Barbeau, eds., Raven Press, New York, (1976), pp. 311–326.Google Scholar
  35. 35.
    L6pez-Colomé, A.M., Salceda, R., and Pasantes-Morales, H., 1978, Potassium stimulated release of GABA, glycine and taurine from the chick retina, Neurochem. Res., 3:1069–1074.Google Scholar
  36. 36.
    L6pez-Colomé, A.M., Salceda, R., Tapia, R., and Pasantes-Morales, H., 1978, K+-stimulated release of labeled y-aminobutyrate, glycine and taurine in slices of several regions of rat central nervous system, Neuroscience, 3: 1069–1074.PubMedCrossRefGoogle Scholar
  37. 37.
    L6pez-Colomé, A.M., and Pasantes-Morales, H., 1980, Taurine interactions with chick retinal membranes, J. Neurochem., 34:1047–1052.Google Scholar
  38. 38.
    López-Colomé, A.M., and Pasantes-Morales, H., 1980, Effect of taurine on 45Ca-transport in frog retinal rod outer segments, Exp. Eye Res., in press.Google Scholar
  39. 39.
    Mandel, P., Pasantes-Morales, H., and Urban, P.F., 1976, Taurine a putative transmitter in retina, in: “Transmitters in the Visual Process,” S.L. Bonting, ed., Pergamon Press, Oxford, New York, (1976), pp. 89–105.Google Scholar
  40. 40.
    Mandel, P., and Pasantes-Morales, H., Taurine in the Nervous System, in: “Reviews of Neuroscience. Vol. 3”, Ehrenpreis and I. Kopin, eds., Raven Press, New York (1978), pp. 157–193.Google Scholar
  41. 41.
    Michaelis, E.K., Michaelis, M.L., and Boyarski, L.L., 1974, High-affinity glutamate binding to brain synaptic membranes, Biochim. biophys. Acta., 367:338–348.Google Scholar
  42. 42.
    Neal, M.J., and Atterwill, C.K., 1974, Isolation of photoreceptor and conventional nerve terminals by subcellular fractionation of rabbit retina, Nature, London, 251: 331–333.CrossRefGoogle Scholar
  43. 43.
    Neal, M.J., 1976, Amino acid transmitter substances in the vertebrate retina, Gen. Pharmacol., 7:321–323.Google Scholar
  44. 44.
    Okamoto, K., and Sakai, Y., 1980, Localization of sensitive sites to taurine. y-aminobutyric acid, glycine and 13-alanine in the molecular layer of guinea-pig cerebellar slices, Br., J. Pharmac., 69:407–413.Google Scholar
  45. 45.
    Orr, H.T., Cohen, A.I., and Lowry, O.H., 1976, The distribution of taurine in the vertebrate retina, J. Neurochem., 26: 609–611.PubMedCrossRefGoogle Scholar
  46. 46.
    Pasantes-Morales, H., Klethi, J., Ledig, M., and Mandel, P., 1972, Free amino acids in chicken and rat retina, Brain Res., 41: 494–497.Google Scholar
  47. 47.
    Pasantes-Morales, H., Urban, P.F., Klethi, J., and Mandel, P., 1972, Etude de l’effet de la taurine sur l’electroretinogramme de la retine en perfusion, C.R. Acad. Sci. D (Paris), 275:699.Google Scholar
  48. 48.
    Pasantes-Morales, H., Urban, P.F., Klethi, J., and Mandel, P., 1973, Light stimulated release of 35S-taurine from chick retina, Brain Res., 51: 375–378.PubMedCrossRefGoogle Scholar
  49. 49.
    Pasantes-Morales, H., Bonaventure, N., Wioland, N., and Mandel, P., 1973, Effect of intravitreal injections of taurine and GABA on chicken ERG, Int. J. Neurosci., 5:235–241.PubMedCrossRefGoogle Scholar
  50. 50.
    Pasantes-Morales, H., López-Colomé, A.M., Salceda, R., and Mandel, P., 1976, Cysteine sulfinate decarboxylase in chick and rat retina during development, J. Neurochem., 27:1103–1106.Google Scholar
  51. 51.
    Pasantes-Morales, H., Ademe, R.M., and López-Colomé, A.M., 1979, Taurine effects on 45Ca2+ transport in retinal subcellular fractions, Brain Res., 172: 131–138.PubMedCrossRefGoogle Scholar
  52. 52.
    Pasantes-Morales, H., and Gamboa, A., 1980, Effect of taurine on 45Ca2+ accumulation in rat brain synaptosomes, J. Neurochem., 34:244–246.Google Scholar
  53. 53.
    Peck, E.J., Schaeffer, J.M., and Clark, J.H., 1973, y-aminobutyric acid, bicuculline and postsynaptic binding sites, Biochem. Biophys. Res. Commun., 52:394–400.CrossRefGoogle Scholar
  54. 54.
    Rubin, R.P., 1970, The role of calcium in the release of neurotransmitter substances and hormones, Pharmacol. Rev., 22:389–428.Google Scholar
  55. 55.
    Salceda, R., López-Colomë, A.M., and Pasantes-Morales, H., 1977, Light-stimulated release of 35S-taurine from frog retinal rod outer segments, Brain Res., 135: 186–191.Google Scholar
  56. 56.
    Sano, K., and Roberts, E., 1963, Binding of y-aminobutyric acid by mouse brain preparations, Biochem. Pharmacol., 12:489–502.Google Scholar
  57. 57.
    Schmid, R., Sieghart, W., and Karobath, M., 1975, Taurine uptake in synaptosomal fractions of rat cerebral cortex, J. Neurochem., 25: 5–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Sharif, N.A., and Roberts, P.J., 1980, Problems associated with the binding of L-glutamic acid to synaptic membranes: Methodological aspects, J. Neurochem., 34:779–784.Google Scholar
  59. 59.
    Sieghart, W., and Karobath, M., 1974, Evidence for specific synaptosomal localization of exogenous accumulated taurine, J. Neurochem., 23:911–915.Google Scholar
  60. 60.
    Snyder, S.H., 1975, The glycine synaptic receptor in the mammalian nervous system, Br., J. Pharmac., 53:473–484.Google Scholar
  61. 61.
    Thurston, J.H., Hawhart, R.E., and Dirgo, J.A., 1980, Taurine: A role in osmotic regulation of mammalian brain and possible clinical signficance, Life Sci., 26: 1561–1568.PubMedCrossRefGoogle Scholar
  62. 62.
    Urban, P.F., Dreyfus, H., and Mandel, P., 1976, Influence of various amino acids on the bioelectrical response to light stimulation of a superfused frog retina, Life Sci., 18: 473–480.PubMedCrossRefGoogle Scholar
  63. 63.
    Welty, J.D., McBroom, J.J., Appelt, A.W., Peterson, M.B., and Read, W.O., Effect of taurine on heart and brain electrolyte imbalances, in: “Taurine,” R. Huxtable, and A. Barbeau, eds., Raven Press, New York (1976), pp. 155–163.Google Scholar
  64. 64.
    Williams, M., Risley, E.A., and Totaro, J.A., 1980, Interaction of taurine and 3-alanine with central nervous system neurotransmitter receptors, Life Sci., 26: 557–560.PubMedCrossRefGoogle Scholar
  65. 65.
    Yoneda, Y., and Kuriyama, K., 1980, Presence of a low molecular weight endogenous inhibitor on 3H-muscimol binding in synaptic membranes, Nature, 285: 670–673.PubMedCrossRefGoogle Scholar
  66. 66.
    Zukin, S.R., Young, A.B., and Snyder, S.H., 1974, Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system, Proc. Natl. Acad, Sci., U.S.A., 71: 4802–4807.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • A. M. López-Colomé
    • 1
  1. 1.Departamento de Neurociencias Centro de Investigaciones en Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxico 20, D.FMéxico

Personalised recommendations