Biological Methods for Studying Radiosensitization

  • Juliana Denekamp
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 43)


Many aspects of research in radiobiology and radiotherapy depend upon the belief that hypoxic cells exist in human tumours, and that these radioresistant cells determine whether or not the tumour will be cured or will recur after radiotherapy. Hypoxic cells are believed to develop because of the imbalance between tumour cell production and the growth of blood vessels to provide nutrients, including oxygen (1,2). A corded structure similar to that shown in Figure 1 was first demonstrated by Thomlinson and Gray in human lung tumours (3). They postulated that necrosis at 100–150 μm resulted from severe hypoxia and that a rim of hypoxic cells which were about to die existed at the boundary between the viable and dead tissue.


Biological Method Nerve Conduction Velocity Hypoxic Cell Enhancement Ratio Tumour Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. F. Tannock, The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour, Brit, J. Cancer 22:258 (1968).CrossRefGoogle Scholar
  2. 2.
    D. G. Hirst, and J. Denekamp, Tumour cell proliferation in relation to the vasculature, Cell and Tissue Kinet. 12:31 (1979).Google Scholar
  3. 3.
    R. H. Thomlinson, and L. H. Gray, The histological structure of some human lung cancers and the possible implications for radiotherapy, Brit. J. Cancer 9:539 (1955).PubMedCrossRefGoogle Scholar
  4. 4.
    R. H. Thomlinson, Oxygen Therapy: Biological Considerations, in “Modern Trends in Radiotherapy”, T. Deeley and C. P. Wood, eds., Butterworths (1967).Google Scholar
  5. 5.
    J. Denekamp, and J. F. Fowler, Cell proliferation kinetics and radiation therapy, in “Cancer: A Comprehensive Treatise”, Vol. 6, ch. 4, F. F. Becker, ed., Plenum, New York and London (1977).Google Scholar
  6. 6.
    J. Denekamp, D. G. Hirst, F. A. Stewart, and N. H. A. Terry, Is tumour radiosensitization by misonidazole a general phenomenon? Brit. J, Cancer 41:1 (1980).CrossRefGoogle Scholar
  7. 7.
    R. H. Thomlinson, S. Dische, A.J. Gray, and L. M. Errington, Clinical testing of the radiosensitizer Ro-07 0582. III. Response of tumours, Clinical Radiol. 27:167 (1976).CrossRefGoogle Scholar
  8. 8.
    D. V. Ash, M. J. Peckham, and G. G. Steel, A quantitative study of human tumour response to radiation and misonidazole, Brit. J, Cancer 39:503 (1979).CrossRefGoogle Scholar
  9. 9.
    J. Denekamp, J. F. Fowler, and S. Dische, The proportion of hypoxic cells in a human tumor, Int. J. Radiat. Oncol. Biol. Phys. 2:1227 (1977) .PubMedCrossRefGoogle Scholar
  10. 10.
    J. F. Fowler, and J. Denekamp, A review of hypoxic cell radiosensitization in experimental tumors, Pharmacol, and Therap. 7:413 (1979) .CrossRefGoogle Scholar
  11. 11.
    J. Denekamp, Is any single in situ assay of tumour response adequate? Brit. J. Cancer 41:Suppl. IV, 56 (1980).Google Scholar
  12. 12.
    J. Denekamp, Experimental tumor systems: standardization of end-points, Int. J. Radiat. Oncol. Biol. Phys. 5:1175 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    P. W. Sheldon and S.A. Hill, Hypoxic cell radiosensitizers and tumour control by X-ray of a transplanted tumour in mice, Brit. J. Cancer 35:795 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Dische, M. I. Saunders, M. E. Lee, G. E. Adams, and I. R. Flockhart, Clinical testing of the radiosensitizer Ro-07 0582: experience with multiple doses, Brit. J. Cancer 35:567 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Denekamp, N.J. McNally, J. F. Fowler, and M. C. Joiner, Misonidazole in fractionated radiotherapy: little and often? Brit. J. Radiol. (in press).Google Scholar
  16. 16.
    R. Urtasun, P. Band, J. D. Chapman, M. L. Feldstein, B. Mielke, and C. Fryer, Radiation and high dose metronidazole (Flagyl) in supratentorial glioblastomas, New England J. Med. 294: 1364 (1976).CrossRefGoogle Scholar
  17. 17.
    L. J. Shukovsky, Dose, time, volume relationships in squamous cell carcinoma of the supraglottic larynx, Am. J. Roentgen 108:27 (1970).PubMedGoogle Scholar
  18. 18.
    P. Workman, Effects of pretreatment with phenobarbitone and phenotoin on the pharmacokinetics and toxicity of misonidazole, Brit. J. Cancer 40:335 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    G.E. Adams, E. D. Clarke, I. R. Flockhart, R. S. Jacobs, D. S. Sehmi, I. J. Stratford, P. Wardman, M. E. Watts, J. Parrick, R. G. Wallace, and C. E. Smithen, Structure-activity relationships in the development of hypoxic cell radiosensitizers. I. Sensitization efficiency, Int. J. Radiat. Biol. 35: 133 (1979).CrossRefGoogle Scholar
  20. 20.
    P. Wardman, The use of nitroaromatic compounds as hypoxic cell radiosensitizers, Curr. Top. Radiat. Res. Quart. 11:347 (1977).Google Scholar
  21. 21.
    J. M. Brown, and P. Workman, Partition coefficient as a guide to the development of radiosensitizers which are less toxic than misonidazole, Radiat. Res. 82:171 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    D. G. Hirst, B. Vojnovic, I.J. Stratford, and E. L. Travis, The effect of the rädiosensitizer misonidazole on motor nerve conduction velocity in the mouse, Brit. J. Cancer 37 Suppl. III, 237 (1978).Google Scholar
  23. 23.
    D. G. Hirst, B. Vojnovic, and B. Hobson, Changes in nerve conduction velocity in the mouse after acute and chronic administration of nitroimidazoles, Brit. J. Cancer 39:159 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Clarke, K. B. Dawson, P. W. Sheldon, D. J. Chaplin, I. J. Stratford, and G. E. Adams, A quantitative cytochemical method for assessing the neurotoxicity of misonidazole, in “Radiation Sensitizers: Their use in the Clinical Management of Cancer”, L. W. Brady, ed., Masson Publishing Inc., New York (1980).Google Scholar
  25. 25.
    J. Denekamp, and B.D. Michael, Preferential sensitization of hypoxic cells to radiation in vivo, Nature New Biol. 239:21 (1972).PubMedGoogle Scholar
  26. 26.
    J. Denekamp, B. D. Michael, and S. R. Harris, Hypoxic cell radiosensitizers: comparative tests of some electron affinic compounds using epidermal cell survival in vivo, Radiat. Res. 60:119 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    C. E. Smithen, E. D. Clarke, J. A. Dale, R. S. Jacobs, P. Wardman, M. E. Watts, and M. Woodcock, Novel (nitro-1-imidazolyl) alkanolamines as potential radiosensitizers with improved therapeutic properties, Cancer Clin. Trials (in press).Google Scholar
  28. 28.
    N. M. Bleehen, D. Honess, and J. Morgan, The interaction of hyperthermia and the hypoxic cell sensitizer Ro-07 0582 on the EMT 6 mouse tumour, Brit. J. Cancer, 35:299 (1977).PubMedCrossRefGoogle Scholar
  29. 29.
    G. E. Adams, J. F. Fowler, and P. Wardman, eds½. Hypoxic cell sensitizers in radiobiology and radiotherapy, Brit. J. Cancer 37, Suppl. III (1978).Google Scholar
  30. 30.
    I.J. Stratford, and G.E. Adams, The toxicity of the radiosensitizer misonidazole towards hypoxic cells in vitro: a model for mouse and man, Brit. J. Radiol. 51:745 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    C. M. Rose, J. L. Millar, J. H. Peacock, T. A. Phelps, and T. C. Stephens, Differential enhancement of melphalan cytotoxicity in tumor and normal tissue by misonidazole, Cancer Clin. Trials (in press).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Juliana Denekamp
    • 1
  1. 1.Gray Laboratory of the Cancer Research CampaignMount Vernon HospitalNorthwood, MiddlesexEngland

Personalised recommendations