Radiation-Induced Cellular DNA Damage and Repair, and the Effect of Hypoxic Cell Radiosensitizers

  • E. Martin Fielden
  • O. Sapora
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 43)


Chromosomal deoxyribonucleic acid (DNA) is accepted as an important target for radiochemical damage in biological systems following ultraviolet and ionizing irradiation. Several types of experimental data support this hypothesis for numerous biological systems including both mammalian and bacterial cells. The isolation and consequent studies on several mutant strains of Escherichia coli of differing DNA repair capabilities (1,2) have helped to clarify the role of DNA as a primary target and has revealed the significance of post-irradiation cellular repair activity (Table 1).


Excision Repair Single Strand Break Strand Separation Oxygen Enhancement Ratio Ionize Radiation Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Taylor and C. D. Trotter, Linkage map of E.coli strain K12, Bacteriol. Rev. 36:504 (1972).PubMedGoogle Scholar
  2. 2.
    O. Sapora, E. M. Fielden and P. S. Loverock, A comparative study of the effects of two types of radiosensitizers on the survival of several E.coli B and K12 mutants, Radiat. Res. 69:293 (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    P. C. Hanawalt and R. B. Setlow, eds. “Molecular Mechanisms for Repair of DNA, parts A and B”, Plenum Press, New York (1975).Google Scholar
  4. 4.
    P. C. Hanawalt, E. C. Friedberg and C. F. Fox, eds. “DNA Repair Mechanisms”, Academic Press, New York (1978).Google Scholar
  5. 5.
    P. C. Hanawalt, P. K. Cooper, A. K. Genesan and C. A. Smith, DNA repair in bacterial and mammalian cells, Ann. Rev. Biochem. 48:783 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Errera, DNA repair and mutagenesis in bacterial systems and their implication in oncology. Int. J. Radiat. Onc. Biol. Phys. 5:1077 (1979).CrossRefGoogle Scholar
  7. 7.
    M. M. Elkind, DNA repair and cell repair: are they correlated? Int. J. Radiat. Onc. Biol. Phys. 5:1089 (1976).Google Scholar
  8. 8.
    E. M. Witkin, Ultraviolet mutagenesis and inducible DNA repair in E.coli, Bacteriol. Rev. 40:869 (1976).PubMedGoogle Scholar
  9. 9.
    O. Sapora, E. M. Fielden and P. S. Loverock, The application of rapid lysis technique in radiobiology: I. The effect of oxygen and radiosensitizers on DNA strand break production and repair in E.coli Br, Radiat. Res. 64:431 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    R. A. McGrath and R. W. Williams, Reconstruction in vivo of irradiated E.coli deoxyribonucleir acid: the rejoining of broken pieces, Nature (London) 212:534 (1966).CrossRefGoogle Scholar
  11. 11.
    U. K. Ehmann and J. T. Lett, Review and evaluation of molecular weight calculations from the sedimentation profiles of irradiated DNA, Radiat. Res. 54:152 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    R. A. Fox, The analysis of single strand breaks in E.coli using a curve fitting procedure, Int. J. Radiat. Biol. 30: 67 (1976).CrossRefGoogle Scholar
  13. 13.
    P. V. Hariharan and P. A. Cerutti, Formation and repair of gamma-ray induced thymidine damage in Micrococcus radiofurans, J. Molec. Biol. 66:65 (1972).PubMedCrossRefGoogle Scholar
  14. 14.
    R. J. Wilkins, Does the E.coli possess a DNA excision repair for gamma-ray damage? Nature New Biology, 244:269 (1973).PubMedGoogle Scholar
  15. 15.
    G. Ahnstron and K. Erixon, Radiation induced strand breakage in DNA from mammalian cells: strand separation in alkaline solution, Int. J. Radiat. Biol. 23:285 (1973).CrossRefGoogle Scholar
  16. 16.
    B. Rydbert, The rate of strand separation in alkali of DNA of irradiated mammalian cells, Radiat. Res. 61:274 (1975).CrossRefGoogle Scholar
  17. 17.
    O. Sapora, P. S. Loverock and E. M. Fielden, The role of radiation chemical and enzymatic processes on single strand breaks at short time after irradiation, Int. J. Radiat. Biol. 30:385 (1976).CrossRefGoogle Scholar
  18. 18.
    R. A. Fox, E. M. Fielden and O. Sapora, Yield of single strand breaks in the DNA of E.coli 10 msec after irradiation, Int. J. Radiat. Biol. 29:391 (1976).CrossRefGoogle Scholar
  19. 19.
    O. Sapora, E. M. Fielden and P. S. Loverock, The application of rapid lysis techniques in radiobiology: II. The time course of the repair of DNA fixed damage and single strand breaks in E.coli mutants, Radiat. Res. 72:308 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    E. M. Fielden, O. Sapora and P. S. Loverock, The application of rapid lysis techniques in radiobiology: III. The effect of radiosensitizers on the production of DNA damage and the time course of its repair, Radiat. Res. 75:54 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    N. V. Tomilin, Repair of gamma-ray induced lesions in E.coli cells deficient in DNA polymerase I and having thermo-sensitive DNA polymerase III, Molec. Gen. Genet. 129:97 (1974).PubMedCrossRefGoogle Scholar
  22. 22.
    R. J. Wilkins, Endonuclease-sensitive sites in the DNA of irradiated bacteria: a rapid and sensitive assay, Biochem. Biophys. Acta 312:33 (1973).PubMedGoogle Scholar
  23. 23.
    E. Boye, I. Johansen and T. Brustad, Time scale for rejoining of bacteriophage deoxyribonucleic acid molecules in super-infected Pol+ and PolA strains of E.coli after exposure to 4 MeV electrons, J. Bacteriol. 119:522 (1974).PubMedGoogle Scholar
  24. 24.
    B. C. Millar, E. M. Fielden and J. J. Steele, Effect of oxygen-radiosensitizer mixtures on the radiation response of Chinese hamster cells: II. Determination of the initial yield of ssb in the cellular DNA using a rapid-lysis technique, Radiat. Res. 83:57 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    B. Palcic and L. D. Skarsgard, Cytotoxicity of misonidazole and DNA damage in hypoxic mammalian cells, Br. J. Cancer 37, Suppl.III:54 (1978).Google Scholar
  26. 26.
    S. Rajaratnam, The interaction of hyperthermia with the cytotoxicity of electron-affinic radiosensitizers in vitro, Ph.D. Thesis, London University (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • E. Martin Fielden
    • 1
  • O. Sapora
    • 2
  1. 1.Radiobiology UnitInstitute of Cancer ResearchSutton, SurreyUK
  2. 2.Istituto Superiore di SanitàRomeItaly

Personalised recommendations